The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates

PURPOSETo describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODSLaboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of glaucoma 2004-10, Vol.13 (5), p.421-438
1. Verfasser: Johnstone, Murray A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 5
container_start_page 421
container_title Journal of glaucoma
container_volume 13
creator Johnstone, Murray A
description PURPOSETo describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODSLaboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinical methods involve human subject slit lamp, gonioscopy, and operating microscope examination. RESULTSLaboratory evidence demonstrates that aqueous outflow tissues are responsive to intraocular pressure induced deformation. Deformation occurs in response to small pressure gradients. Laboratory evidence also demonstrates the presence of valves discharging aqueous to Schlemm’s canal. The laboratory model predicts pulsatile aqueous discharge in vivo. Clinical in vivo evidence demonstrates pulsatile aqueous flow from the anterior chamber into Schlemm’s canal, from Schlemm’s canal into collector channels, and from Schlemm’s canal into aqueous and episcleral veins, all synchronous with the ocular pulse. CONCLUSIONSAqueous outflow tissue deformation caused by normal intraocular pressure transients induces pulsatile one-way discharge of aqueous to the vascular system. The model identifies biomechanical coupling of intraocular pressure with aqueous outflow tissue deformation and also sites of high flow capable of inducing shear stress. These mechanotransduction mechanisms, well characterized as a means of controlling pressure and flow in the vascular system, also provide a means of regulatory feedback to control intraocular pressure and aqueous flow.
doi_str_mv 10.1097/01.ijg.0000131757.63542.24
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66854565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66854565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3034-870f2d67d2a5ad6e6c536940d26483517382e2333c61dacb720449e630345cc73</originalsourceid><addsrcrecordid>eNpFUctu1DAUtRCIlsIvIIsFuwS_nXRXVVOK1NJKDBI7y3VuGJfYHuKkQz-Bv8bpjKg39pXPyz4IfaCkpqTVnwit_f3PmpRFOdVS14pLwWomXqBjKrmqREN_vCxnInVFGtYeoTc53xPCCGP0NToqIClIw4_R3_UG8NnvGdKc8c089UPa4W-PeYKAbcYWX4Pb2OidHfDtHLanePXgO4gOcD-mgFd_bPDRTj5FnHq89jnPgG3s_otepwcIECfsI76cg41Pt19TrPbT7eiDnSC_Ra96O2R4d9hP0PeL1fr8srq6-fzl_OyqcpxwUTWa9KxTumNW2k6BcuXBrSAdU6LhkmreMGCcc6doZ92dZkSIFtRCls5pfoI-7nW3YyoR82SCzw6GwcYlr1GqkUIqWYCne6AbU84j9Ga7RB0fDSVmKcIQakoR5rkI81SEYaKQ3x9c5rsA3TP18PMFIPaAXRomGPOvYd7BaDZgh2mzSCpK26ZihAi6GFSLieD_ABYulF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66854565</pqid></control><display><type>article</type><title>The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Johnstone, Murray A</creator><creatorcontrib>Johnstone, Murray A</creatorcontrib><description>PURPOSETo describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODSLaboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinical methods involve human subject slit lamp, gonioscopy, and operating microscope examination. RESULTSLaboratory evidence demonstrates that aqueous outflow tissues are responsive to intraocular pressure induced deformation. Deformation occurs in response to small pressure gradients. Laboratory evidence also demonstrates the presence of valves discharging aqueous to Schlemm’s canal. The laboratory model predicts pulsatile aqueous discharge in vivo. Clinical in vivo evidence demonstrates pulsatile aqueous flow from the anterior chamber into Schlemm’s canal, from Schlemm’s canal into collector channels, and from Schlemm’s canal into aqueous and episcleral veins, all synchronous with the ocular pulse. CONCLUSIONSAqueous outflow tissue deformation caused by normal intraocular pressure transients induces pulsatile one-way discharge of aqueous to the vascular system. The model identifies biomechanical coupling of intraocular pressure with aqueous outflow tissue deformation and also sites of high flow capable of inducing shear stress. These mechanotransduction mechanisms, well characterized as a means of controlling pressure and flow in the vascular system, also provide a means of regulatory feedback to control intraocular pressure and aqueous flow.</description><identifier>ISSN: 1057-0829</identifier><identifier>EISSN: 1536-481X</identifier><identifier>DOI: 10.1097/01.ijg.0000131757.63542.24</identifier><identifier>PMID: 15354083</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins, Inc</publisher><subject>Animals ; Aqueous Humor - physiology ; Humans ; Intraocular Pressure - physiology ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Models, Biological ; Primates ; Pulsatile Flow ; Sclera - physiology ; Sclera - ultrastructure ; Stress, Mechanical ; Trabecular Meshwork - physiology</subject><ispartof>Journal of glaucoma, 2004-10, Vol.13 (5), p.421-438</ispartof><rights>2004 Lippincott Williams &amp; Wilkins, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3034-870f2d67d2a5ad6e6c536940d26483517382e2333c61dacb720449e630345cc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15354083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnstone, Murray A</creatorcontrib><title>The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates</title><title>Journal of glaucoma</title><addtitle>J Glaucoma</addtitle><description>PURPOSETo describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODSLaboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinical methods involve human subject slit lamp, gonioscopy, and operating microscope examination. RESULTSLaboratory evidence demonstrates that aqueous outflow tissues are responsive to intraocular pressure induced deformation. Deformation occurs in response to small pressure gradients. Laboratory evidence also demonstrates the presence of valves discharging aqueous to Schlemm’s canal. The laboratory model predicts pulsatile aqueous discharge in vivo. Clinical in vivo evidence demonstrates pulsatile aqueous flow from the anterior chamber into Schlemm’s canal, from Schlemm’s canal into collector channels, and from Schlemm’s canal into aqueous and episcleral veins, all synchronous with the ocular pulse. CONCLUSIONSAqueous outflow tissue deformation caused by normal intraocular pressure transients induces pulsatile one-way discharge of aqueous to the vascular system. The model identifies biomechanical coupling of intraocular pressure with aqueous outflow tissue deformation and also sites of high flow capable of inducing shear stress. These mechanotransduction mechanisms, well characterized as a means of controlling pressure and flow in the vascular system, also provide a means of regulatory feedback to control intraocular pressure and aqueous flow.</description><subject>Animals</subject><subject>Aqueous Humor - physiology</subject><subject>Humans</subject><subject>Intraocular Pressure - physiology</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Biological</subject><subject>Primates</subject><subject>Pulsatile Flow</subject><subject>Sclera - physiology</subject><subject>Sclera - ultrastructure</subject><subject>Stress, Mechanical</subject><subject>Trabecular Meshwork - physiology</subject><issn>1057-0829</issn><issn>1536-481X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFUctu1DAUtRCIlsIvIIsFuwS_nXRXVVOK1NJKDBI7y3VuGJfYHuKkQz-Bv8bpjKg39pXPyz4IfaCkpqTVnwit_f3PmpRFOdVS14pLwWomXqBjKrmqREN_vCxnInVFGtYeoTc53xPCCGP0NToqIClIw4_R3_UG8NnvGdKc8c089UPa4W-PeYKAbcYWX4Pb2OidHfDtHLanePXgO4gOcD-mgFd_bPDRTj5FnHq89jnPgG3s_otepwcIECfsI76cg41Pt19TrPbT7eiDnSC_Ra96O2R4d9hP0PeL1fr8srq6-fzl_OyqcpxwUTWa9KxTumNW2k6BcuXBrSAdU6LhkmreMGCcc6doZ92dZkSIFtRCls5pfoI-7nW3YyoR82SCzw6GwcYlr1GqkUIqWYCne6AbU84j9Ga7RB0fDSVmKcIQakoR5rkI81SEYaKQ3x9c5rsA3TP18PMFIPaAXRomGPOvYd7BaDZgh2mzSCpK26ZihAi6GFSLieD_ABYulF0</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Johnstone, Murray A</creator><general>Lippincott Williams &amp; Wilkins, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200410</creationdate><title>The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates</title><author>Johnstone, Murray A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3034-870f2d67d2a5ad6e6c536940d26483517382e2333c61dacb720449e630345cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Aqueous Humor - physiology</topic><topic>Humans</topic><topic>Intraocular Pressure - physiology</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Biological</topic><topic>Primates</topic><topic>Pulsatile Flow</topic><topic>Sclera - physiology</topic><topic>Sclera - ultrastructure</topic><topic>Stress, Mechanical</topic><topic>Trabecular Meshwork - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnstone, Murray A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of glaucoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnstone, Murray A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates</atitle><jtitle>Journal of glaucoma</jtitle><addtitle>J Glaucoma</addtitle><date>2004-10</date><risdate>2004</risdate><volume>13</volume><issue>5</issue><spage>421</spage><epage>438</epage><pages>421-438</pages><issn>1057-0829</issn><eissn>1536-481X</eissn><abstract>PURPOSETo describe a new aqueous outflow model involving a mechanical pump. MATERIALS AND METHODSLaboratory materials include human and monkey eyes; methods include the dissecting microscope, light microscopy, scanning electron microscopy, transmission electron microscopy, and tracer studies. Clinical methods involve human subject slit lamp, gonioscopy, and operating microscope examination. RESULTSLaboratory evidence demonstrates that aqueous outflow tissues are responsive to intraocular pressure induced deformation. Deformation occurs in response to small pressure gradients. Laboratory evidence also demonstrates the presence of valves discharging aqueous to Schlemm’s canal. The laboratory model predicts pulsatile aqueous discharge in vivo. Clinical in vivo evidence demonstrates pulsatile aqueous flow from the anterior chamber into Schlemm’s canal, from Schlemm’s canal into collector channels, and from Schlemm’s canal into aqueous and episcleral veins, all synchronous with the ocular pulse. CONCLUSIONSAqueous outflow tissue deformation caused by normal intraocular pressure transients induces pulsatile one-way discharge of aqueous to the vascular system. The model identifies biomechanical coupling of intraocular pressure with aqueous outflow tissue deformation and also sites of high flow capable of inducing shear stress. These mechanotransduction mechanisms, well characterized as a means of controlling pressure and flow in the vascular system, also provide a means of regulatory feedback to control intraocular pressure and aqueous flow.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins, Inc</pub><pmid>15354083</pmid><doi>10.1097/01.ijg.0000131757.63542.24</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-0829
ispartof Journal of glaucoma, 2004-10, Vol.13 (5), p.421-438
issn 1057-0829
1536-481X
language eng
recordid cdi_proquest_miscellaneous_66854565
source MEDLINE; Journals@Ovid Complete
subjects Animals
Aqueous Humor - physiology
Humans
Intraocular Pressure - physiology
Microscopy, Electron
Microscopy, Electron, Scanning
Models, Biological
Primates
Pulsatile Flow
Sclera - physiology
Sclera - ultrastructure
Stress, Mechanical
Trabecular Meshwork - physiology
title The Aqueous Outflow System as a Mechanical Pump: Evidence from Examination of Tissue and Aqueous Movement in Human and Non-Human Primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Aqueous%20Outflow%20System%20as%20a%20Mechanical%20Pump:%20Evidence%20from%20Examination%20of%20Tissue%20and%20Aqueous%20Movement%20in%20Human%20and%20Non-Human%20Primates&rft.jtitle=Journal%20of%20glaucoma&rft.au=Johnstone,%20Murray%20A&rft.date=2004-10&rft.volume=13&rft.issue=5&rft.spage=421&rft.epage=438&rft.pages=421-438&rft.issn=1057-0829&rft.eissn=1536-481X&rft_id=info:doi/10.1097/01.ijg.0000131757.63542.24&rft_dat=%3Cproquest_cross%3E66854565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66854565&rft_id=info:pmid/15354083&rfr_iscdi=true