How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space
Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Eu...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Modeling 2009-01, Vol.49 (1), p.108-119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | Journal of Chemical Information and Modeling |
container_volume | 49 |
creator | Bender, Andreas Jenkins, Jeremy L Scheiber, Josef Sukuru, Sai Chetan K Glick, Meir Davies, John W |
description | Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization. Four broad descriptor classes are identified, which are circular fingerprints; circular fingerprints considering counts; path-based and keyed fingerprints; and pharmacophoric descriptors. Descriptor behavior is much more defined by those four classes than the particular parametrization. Using counts instead of the presence/absence of fingerprints significantly changes descriptor behavior, which is crucial for performance of topological autocorrelation vectors, but not circular fingerprints. Four-point pharmacophores (piDAPH4) surprisingly lead to much higher retrieval rates than three-point pharmacophores (28.21% vs 19.15%) but still similar rank-ordering of compounds (retrieval of similar actives). Looking into individual rankings, circular fingerprints seem more appropriate than path-based fingerprints if complex ring systems or branching patterns are present; count-based fingerprints could be more suitable in databases with a large number of repeated subunits (amide bonds, sugar rings, terpenes). Information-based selection of diverse fingerprints for consensus scoring (ECFP4/TGD fingerprints) led only to marginal improvement over single fingerprint results. While it seems to be nontrivial to exploit orthogonal descriptor behavior to improve retrieval rates in consensus virtual screening, those descriptors still each retrieve different actives which corroborates the strategy of employing diverse descriptors individually in prospective virtual screening settings. |
doi_str_mv | 10.1021/ci800249s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66853810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66853810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-182644ac0b2b437858e6a7ea5cb980edfc4842c6fbd26606e6a2a5857b33428e3</originalsourceid><addsrcrecordid>eNplkF1LwzAUhoMobk4v_AMSBAUvqvlqll7JmB8TNhSm1yXNTl1G29SkRfbv7dhU0Kvzwnl4D-dB6JSSa0oYvTFWEcJEEvZQn8aMRDEVbH-TRRIlcSJ76CiEFSGcJ5Idoh5NKOMJE320mrhPPLelLbTHIw_f2TZrPAftzdJW73gGzdItwi0e4RdvK2NrXeCxK2tXQdXgUaWLdbABuxzPXAGm3bTdQTDe1o3zeF5rA8foINdFgJPdHKC3h_vX8SSaPj8-jUfTSHNBmogqJoXQhmQsE3yoYgVSD0HHJksUgUVuhBLMyDxbMCmJ7LZMxyoeZpwLpoAP0OW2t_buo4XQpKUNBopCV-DakEqpYq4o6cDzP-DKtb77JaSMyk4QIaqDrraQ8S4ED3lae1tqv04pSTf20x_7HXu2K2yzEha_5E53B1xsAW3C77H_RV8f3Yrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216239008</pqid></control><display><type>article</type><title>How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bender, Andreas ; Jenkins, Jeremy L ; Scheiber, Josef ; Sukuru, Sai Chetan K ; Glick, Meir ; Davies, John W</creator><creatorcontrib>Bender, Andreas ; Jenkins, Jeremy L ; Scheiber, Josef ; Sukuru, Sai Chetan K ; Glick, Meir ; Davies, John W</creatorcontrib><description>Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization. Four broad descriptor classes are identified, which are circular fingerprints; circular fingerprints considering counts; path-based and keyed fingerprints; and pharmacophoric descriptors. Descriptor behavior is much more defined by those four classes than the particular parametrization. Using counts instead of the presence/absence of fingerprints significantly changes descriptor behavior, which is crucial for performance of topological autocorrelation vectors, but not circular fingerprints. Four-point pharmacophores (piDAPH4) surprisingly lead to much higher retrieval rates than three-point pharmacophores (28.21% vs 19.15%) but still similar rank-ordering of compounds (retrieval of similar actives). Looking into individual rankings, circular fingerprints seem more appropriate than path-based fingerprints if complex ring systems or branching patterns are present; count-based fingerprints could be more suitable in databases with a large number of repeated subunits (amide bonds, sugar rings, terpenes). Information-based selection of diverse fingerprints for consensus scoring (ECFP4/TGD fingerprints) led only to marginal improvement over single fingerprint results. While it seems to be nontrivial to exploit orthogonal descriptor behavior to improve retrieval rates in consensus virtual screening, those descriptors still each retrieve different actives which corroborates the strategy of employing diverse descriptors individually in prospective virtual screening settings.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1520-5142</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci800249s</identifier><identifier>PMID: 19123924</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemical compounds ; Databases, Factual ; Drug Evaluation, Preclinical ; Euclidean space ; Informatics ; Molecular Structure ; Pharmaceutical Modeling ; Principal Component Analysis ; Principal components analysis ; User-Computer Interface</subject><ispartof>Journal of Chemical Information and Modeling, 2009-01, Vol.49 (1), p.108-119</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 26, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-182644ac0b2b437858e6a7ea5cb980edfc4842c6fbd26606e6a2a5857b33428e3</citedby><cites>FETCH-LOGICAL-a340t-182644ac0b2b437858e6a7ea5cb980edfc4842c6fbd26606e6a2a5857b33428e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci800249s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci800249s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19123924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bender, Andreas</creatorcontrib><creatorcontrib>Jenkins, Jeremy L</creatorcontrib><creatorcontrib>Scheiber, Josef</creatorcontrib><creatorcontrib>Sukuru, Sai Chetan K</creatorcontrib><creatorcontrib>Glick, Meir</creatorcontrib><creatorcontrib>Davies, John W</creatorcontrib><title>How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space</title><title>Journal of Chemical Information and Modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization. Four broad descriptor classes are identified, which are circular fingerprints; circular fingerprints considering counts; path-based and keyed fingerprints; and pharmacophoric descriptors. Descriptor behavior is much more defined by those four classes than the particular parametrization. Using counts instead of the presence/absence of fingerprints significantly changes descriptor behavior, which is crucial for performance of topological autocorrelation vectors, but not circular fingerprints. Four-point pharmacophores (piDAPH4) surprisingly lead to much higher retrieval rates than three-point pharmacophores (28.21% vs 19.15%) but still similar rank-ordering of compounds (retrieval of similar actives). Looking into individual rankings, circular fingerprints seem more appropriate than path-based fingerprints if complex ring systems or branching patterns are present; count-based fingerprints could be more suitable in databases with a large number of repeated subunits (amide bonds, sugar rings, terpenes). Information-based selection of diverse fingerprints for consensus scoring (ECFP4/TGD fingerprints) led only to marginal improvement over single fingerprint results. While it seems to be nontrivial to exploit orthogonal descriptor behavior to improve retrieval rates in consensus virtual screening, those descriptors still each retrieve different actives which corroborates the strategy of employing diverse descriptors individually in prospective virtual screening settings.</description><subject>Analytical chemistry</subject><subject>Chemical compounds</subject><subject>Databases, Factual</subject><subject>Drug Evaluation, Preclinical</subject><subject>Euclidean space</subject><subject>Informatics</subject><subject>Molecular Structure</subject><subject>Pharmaceutical Modeling</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>User-Computer Interface</subject><issn>1549-9596</issn><issn>1520-5142</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkF1LwzAUhoMobk4v_AMSBAUvqvlqll7JmB8TNhSm1yXNTl1G29SkRfbv7dhU0Kvzwnl4D-dB6JSSa0oYvTFWEcJEEvZQn8aMRDEVbH-TRRIlcSJ76CiEFSGcJ5Idoh5NKOMJE320mrhPPLelLbTHIw_f2TZrPAftzdJW73gGzdItwi0e4RdvK2NrXeCxK2tXQdXgUaWLdbABuxzPXAGm3bTdQTDe1o3zeF5rA8foINdFgJPdHKC3h_vX8SSaPj8-jUfTSHNBmogqJoXQhmQsE3yoYgVSD0HHJksUgUVuhBLMyDxbMCmJ7LZMxyoeZpwLpoAP0OW2t_buo4XQpKUNBopCV-DakEqpYq4o6cDzP-DKtb77JaSMyk4QIaqDrraQ8S4ED3lae1tqv04pSTf20x_7HXu2K2yzEha_5E53B1xsAW3C77H_RV8f3Yrc</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Bender, Andreas</creator><creator>Jenkins, Jeremy L</creator><creator>Scheiber, Josef</creator><creator>Sukuru, Sai Chetan K</creator><creator>Glick, Meir</creator><creator>Davies, John W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space</title><author>Bender, Andreas ; Jenkins, Jeremy L ; Scheiber, Josef ; Sukuru, Sai Chetan K ; Glick, Meir ; Davies, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-182644ac0b2b437858e6a7ea5cb980edfc4842c6fbd26606e6a2a5857b33428e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Chemical compounds</topic><topic>Databases, Factual</topic><topic>Drug Evaluation, Preclinical</topic><topic>Euclidean space</topic><topic>Informatics</topic><topic>Molecular Structure</topic><topic>Pharmaceutical Modeling</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Andreas</creatorcontrib><creatorcontrib>Jenkins, Jeremy L</creatorcontrib><creatorcontrib>Scheiber, Josef</creatorcontrib><creatorcontrib>Sukuru, Sai Chetan K</creatorcontrib><creatorcontrib>Glick, Meir</creatorcontrib><creatorcontrib>Davies, John W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Andreas</au><au>Jenkins, Jeremy L</au><au>Scheiber, Josef</au><au>Sukuru, Sai Chetan K</au><au>Glick, Meir</au><au>Davies, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space</atitle><jtitle>Journal of Chemical Information and Modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>49</volume><issue>1</issue><spage>108</spage><epage>119</epage><pages>108-119</pages><issn>1549-9596</issn><eissn>1520-5142</eissn><eissn>1549-960X</eissn><abstract>Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization. Four broad descriptor classes are identified, which are circular fingerprints; circular fingerprints considering counts; path-based and keyed fingerprints; and pharmacophoric descriptors. Descriptor behavior is much more defined by those four classes than the particular parametrization. Using counts instead of the presence/absence of fingerprints significantly changes descriptor behavior, which is crucial for performance of topological autocorrelation vectors, but not circular fingerprints. Four-point pharmacophores (piDAPH4) surprisingly lead to much higher retrieval rates than three-point pharmacophores (28.21% vs 19.15%) but still similar rank-ordering of compounds (retrieval of similar actives). Looking into individual rankings, circular fingerprints seem more appropriate than path-based fingerprints if complex ring systems or branching patterns are present; count-based fingerprints could be more suitable in databases with a large number of repeated subunits (amide bonds, sugar rings, terpenes). Information-based selection of diverse fingerprints for consensus scoring (ECFP4/TGD fingerprints) led only to marginal improvement over single fingerprint results. While it seems to be nontrivial to exploit orthogonal descriptor behavior to improve retrieval rates in consensus virtual screening, those descriptors still each retrieve different actives which corroborates the strategy of employing diverse descriptors individually in prospective virtual screening settings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19123924</pmid><doi>10.1021/ci800249s</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of Chemical Information and Modeling, 2009-01, Vol.49 (1), p.108-119 |
issn | 1549-9596 1520-5142 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_66853810 |
source | ACS Publications; MEDLINE |
subjects | Analytical chemistry Chemical compounds Databases, Factual Drug Evaluation, Preclinical Euclidean space Informatics Molecular Structure Pharmaceutical Modeling Principal Component Analysis Principal components analysis User-Computer Interface |
title | How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Similar%20Are%20Similarity%20Searching%20Methods?%20A%20Principal%20Component%20Analysis%20of%20Molecular%20Descriptor%20Space&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Modeling&rft.au=Bender,%20Andreas&rft.date=2009-01-01&rft.volume=49&rft.issue=1&rft.spage=108&rft.epage=119&rft.pages=108-119&rft.issn=1549-9596&rft.eissn=1520-5142&rft_id=info:doi/10.1021/ci800249s&rft_dat=%3Cproquest_cross%3E66853810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216239008&rft_id=info:pmid/19123924&rfr_iscdi=true |