Coding theory based models for protein translation initiation in prokaryotic organisms

Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2004-08, Vol.76 (1), p.249-260
Hauptverfasser: May, Elebeoba E., Vouk, Mladen A., Bitzer, Donald L., Rosnick, David I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 249
container_title BioSystems
container_volume 76
creator May, Elebeoba E.
Vouk, Mladen A.
Bitzer, Donald L.
Rosnick, David I.
description Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.
doi_str_mv 10.1016/j.biosystems.2004.05.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66847288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264704000851</els_id><sourcerecordid>66847288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoVhw5q1e4VCp97sUbJsKcc22NYCBXbZdhVkie6U2lYrKgXy9nWQFD2OF_LwkfzxMcYF1AJE921b9zHRngpOVEsAVUNbg9Af2EoYLSvTSPWRraCBppKd0mfsC9EWlmqN-MzORNu0QiizYn83KcT5gZd_mPKe944w8CkFHIkPKfOnnArGmZfsZhpdiWnmcY4lvo0H4tHlfSrR85Qf3Bxpogv2aXAj4ddTP2d_fnz_vbmt7n_9vNtc31deSSjVeuiHgD5oHYJAqaQD15u1GtpBrrGXII3oPKiu1SBAt9BLJTrX6aFBDSiac3Z1vLukeN4hFTtF8jiObsa0I9t1RmlpzAKaI-hzIso42KccpyW3FWAPTu3Wvju1B6cWWrs4XVYvTz92_YThffEkcQFujsAiDV8iZks-4uwxxIy-2JDi_7-8Ajv_j1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66847288</pqid></control><display><type>article</type><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</creator><creatorcontrib>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</creatorcontrib><description>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2004.05.017</identifier><identifier>PMID: 15351148</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Bacterial Proteins - genetics ; Chromosome Mapping - methods ; Coding theory ; Escherichia coli - genetics ; Genetic Code - genetics ; Genome, Bacterial ; Information processing ; Information Storage and Retrieval - methods ; Information Theory ; Models, Genetic ; Open Reading Frames - genetics ; Protein Biosynthesis - genetics ; Sequence Analysis, RNA - methods ; Translation initiation</subject><ispartof>BioSystems, 2004-08, Vol.76 (1), p.249-260</ispartof><rights>2004 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</citedby><cites>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2004.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15351148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, Elebeoba E.</creatorcontrib><creatorcontrib>Vouk, Mladen A.</creatorcontrib><creatorcontrib>Bitzer, Donald L.</creatorcontrib><creatorcontrib>Rosnick, David I.</creatorcontrib><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.</description><subject>Bacterial Proteins - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Coding theory</subject><subject>Escherichia coli - genetics</subject><subject>Genetic Code - genetics</subject><subject>Genome, Bacterial</subject><subject>Information processing</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information Theory</subject><subject>Models, Genetic</subject><subject>Open Reading Frames - genetics</subject><subject>Protein Biosynthesis - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Translation initiation</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu2zAMhoVhw5q1e4VCp97sUbJsKcc22NYCBXbZdhVkie6U2lYrKgXy9nWQFD2OF_LwkfzxMcYF1AJE921b9zHRngpOVEsAVUNbg9Af2EoYLSvTSPWRraCBppKd0mfsC9EWlmqN-MzORNu0QiizYn83KcT5gZd_mPKe944w8CkFHIkPKfOnnArGmZfsZhpdiWnmcY4lvo0H4tHlfSrR85Qf3Bxpogv2aXAj4ddTP2d_fnz_vbmt7n_9vNtc31deSSjVeuiHgD5oHYJAqaQD15u1GtpBrrGXII3oPKiu1SBAt9BLJTrX6aFBDSiac3Z1vLukeN4hFTtF8jiObsa0I9t1RmlpzAKaI-hzIso42KccpyW3FWAPTu3Wvju1B6cWWrs4XVYvTz92_YThffEkcQFujsAiDV8iZks-4uwxxIy-2JDi_7-8Ajv_j1I</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>May, Elebeoba E.</creator><creator>Vouk, Mladen A.</creator><creator>Bitzer, Donald L.</creator><creator>Rosnick, David I.</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><author>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Coding theory</topic><topic>Escherichia coli - genetics</topic><topic>Genetic Code - genetics</topic><topic>Genome, Bacterial</topic><topic>Information processing</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information Theory</topic><topic>Models, Genetic</topic><topic>Open Reading Frames - genetics</topic><topic>Protein Biosynthesis - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Translation initiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, Elebeoba E.</creatorcontrib><creatorcontrib>Vouk, Mladen A.</creatorcontrib><creatorcontrib>Bitzer, Donald L.</creatorcontrib><creatorcontrib>Rosnick, David I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, Elebeoba E.</au><au>Vouk, Mladen A.</au><au>Bitzer, Donald L.</au><au>Rosnick, David I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding theory based models for protein translation initiation in prokaryotic organisms</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>76</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>15351148</pmid><doi>10.1016/j.biosystems.2004.05.017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-2647
ispartof BioSystems, 2004-08, Vol.76 (1), p.249-260
issn 0303-2647
1872-8324
language eng
recordid cdi_proquest_miscellaneous_66847288
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bacterial Proteins - genetics
Chromosome Mapping - methods
Coding theory
Escherichia coli - genetics
Genetic Code - genetics
Genome, Bacterial
Information processing
Information Storage and Retrieval - methods
Information Theory
Models, Genetic
Open Reading Frames - genetics
Protein Biosynthesis - genetics
Sequence Analysis, RNA - methods
Translation initiation
title Coding theory based models for protein translation initiation in prokaryotic organisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20theory%20based%20models%20for%20protein%20translation%20initiation%20in%20prokaryotic%20organisms&rft.jtitle=BioSystems&rft.au=May,%20Elebeoba%20E.&rft.date=2004-08-01&rft.volume=76&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2004.05.017&rft_dat=%3Cproquest_cross%3E66847288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66847288&rft_id=info:pmid/15351148&rft_els_id=S0303264704000851&rfr_iscdi=true