Coding theory based models for protein translation initiation in prokaryotic organisms
Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribo...
Gespeichert in:
Veröffentlicht in: | BioSystems 2004-08, Vol.76 (1), p.249-260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | BioSystems |
container_volume | 76 |
creator | May, Elebeoba E. Vouk, Mladen A. Bitzer, Donald L. Rosnick, David I. |
description | Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of
Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the
E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to
E. coli including:
Salmonella typhimurium LT2,
Bacillus subtilis, and
Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to
B. subtilis, and
S. aureus Mu50 yielded results similar to those for
E. coli K-12. Contrary to our expectations, the behavior of
S. typhimurium LT2, the more taxonomically related to
E. coli, resembled that of the non-translated sequence group. |
doi_str_mv | 10.1016/j.biosystems.2004.05.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66847288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264704000851</els_id><sourcerecordid>66847288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoVhw5q1e4VCp97sUbJsKcc22NYCBXbZdhVkie6U2lYrKgXy9nWQFD2OF_LwkfzxMcYF1AJE921b9zHRngpOVEsAVUNbg9Af2EoYLSvTSPWRraCBppKd0mfsC9EWlmqN-MzORNu0QiizYn83KcT5gZd_mPKe944w8CkFHIkPKfOnnArGmZfsZhpdiWnmcY4lvo0H4tHlfSrR85Qf3Bxpogv2aXAj4ddTP2d_fnz_vbmt7n_9vNtc31deSSjVeuiHgD5oHYJAqaQD15u1GtpBrrGXII3oPKiu1SBAt9BLJTrX6aFBDSiac3Z1vLukeN4hFTtF8jiObsa0I9t1RmlpzAKaI-hzIso42KccpyW3FWAPTu3Wvju1B6cWWrs4XVYvTz92_YThffEkcQFujsAiDV8iZks-4uwxxIy-2JDi_7-8Ajv_j1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66847288</pqid></control><display><type>article</type><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</creator><creatorcontrib>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</creatorcontrib><description>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of
Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the
E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to
E. coli including:
Salmonella typhimurium LT2,
Bacillus subtilis, and
Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to
B. subtilis, and
S. aureus Mu50 yielded results similar to those for
E. coli K-12. Contrary to our expectations, the behavior of
S. typhimurium LT2, the more taxonomically related to
E. coli, resembled that of the non-translated sequence group.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2004.05.017</identifier><identifier>PMID: 15351148</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Bacterial Proteins - genetics ; Chromosome Mapping - methods ; Coding theory ; Escherichia coli - genetics ; Genetic Code - genetics ; Genome, Bacterial ; Information processing ; Information Storage and Retrieval - methods ; Information Theory ; Models, Genetic ; Open Reading Frames - genetics ; Protein Biosynthesis - genetics ; Sequence Analysis, RNA - methods ; Translation initiation</subject><ispartof>BioSystems, 2004-08, Vol.76 (1), p.249-260</ispartof><rights>2004 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</citedby><cites>FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2004.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15351148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>May, Elebeoba E.</creatorcontrib><creatorcontrib>Vouk, Mladen A.</creatorcontrib><creatorcontrib>Bitzer, Donald L.</creatorcontrib><creatorcontrib>Rosnick, David I.</creatorcontrib><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of
Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the
E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to
E. coli including:
Salmonella typhimurium LT2,
Bacillus subtilis, and
Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to
B. subtilis, and
S. aureus Mu50 yielded results similar to those for
E. coli K-12. Contrary to our expectations, the behavior of
S. typhimurium LT2, the more taxonomically related to
E. coli, resembled that of the non-translated sequence group.</description><subject>Bacterial Proteins - genetics</subject><subject>Chromosome Mapping - methods</subject><subject>Coding theory</subject><subject>Escherichia coli - genetics</subject><subject>Genetic Code - genetics</subject><subject>Genome, Bacterial</subject><subject>Information processing</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information Theory</subject><subject>Models, Genetic</subject><subject>Open Reading Frames - genetics</subject><subject>Protein Biosynthesis - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Translation initiation</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu2zAMhoVhw5q1e4VCp97sUbJsKcc22NYCBXbZdhVkie6U2lYrKgXy9nWQFD2OF_LwkfzxMcYF1AJE921b9zHRngpOVEsAVUNbg9Af2EoYLSvTSPWRraCBppKd0mfsC9EWlmqN-MzORNu0QiizYn83KcT5gZd_mPKe944w8CkFHIkPKfOnnArGmZfsZhpdiWnmcY4lvo0H4tHlfSrR85Qf3Bxpogv2aXAj4ddTP2d_fnz_vbmt7n_9vNtc31deSSjVeuiHgD5oHYJAqaQD15u1GtpBrrGXII3oPKiu1SBAt9BLJTrX6aFBDSiac3Z1vLukeN4hFTtF8jiObsa0I9t1RmlpzAKaI-hzIso42KccpyW3FWAPTu3Wvju1B6cWWrs4XVYvTz92_YThffEkcQFujsAiDV8iZks-4uwxxIy-2JDi_7-8Ajv_j1I</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>May, Elebeoba E.</creator><creator>Vouk, Mladen A.</creator><creator>Bitzer, Donald L.</creator><creator>Rosnick, David I.</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Coding theory based models for protein translation initiation in prokaryotic organisms</title><author>May, Elebeoba E. ; Vouk, Mladen A. ; Bitzer, Donald L. ; Rosnick, David I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-9fbfdecd77dd1e242a0ab894f5f29eb202816c04657010750b2416a67f3e70e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Chromosome Mapping - methods</topic><topic>Coding theory</topic><topic>Escherichia coli - genetics</topic><topic>Genetic Code - genetics</topic><topic>Genome, Bacterial</topic><topic>Information processing</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information Theory</topic><topic>Models, Genetic</topic><topic>Open Reading Frames - genetics</topic><topic>Protein Biosynthesis - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Translation initiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, Elebeoba E.</creatorcontrib><creatorcontrib>Vouk, Mladen A.</creatorcontrib><creatorcontrib>Bitzer, Donald L.</creatorcontrib><creatorcontrib>Rosnick, David I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, Elebeoba E.</au><au>Vouk, Mladen A.</au><au>Bitzer, Donald L.</au><au>Rosnick, David I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding theory based models for protein translation initiation in prokaryotic organisms</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>76</volume><issue>1</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of
Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the
E. coli based coding models on 5′ untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to
E. coli including:
Salmonella typhimurium LT2,
Bacillus subtilis, and
Staphylococcus aureus Mu50. The model identified regions on the 5′ untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine–Dalgarno domain and the non-random domain. Applying the EC coding-based models to
B. subtilis, and
S. aureus Mu50 yielded results similar to those for
E. coli K-12. Contrary to our expectations, the behavior of
S. typhimurium LT2, the more taxonomically related to
E. coli, resembled that of the non-translated sequence group.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>15351148</pmid><doi>10.1016/j.biosystems.2004.05.017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2004-08, Vol.76 (1), p.249-260 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_66847288 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bacterial Proteins - genetics Chromosome Mapping - methods Coding theory Escherichia coli - genetics Genetic Code - genetics Genome, Bacterial Information processing Information Storage and Retrieval - methods Information Theory Models, Genetic Open Reading Frames - genetics Protein Biosynthesis - genetics Sequence Analysis, RNA - methods Translation initiation |
title | Coding theory based models for protein translation initiation in prokaryotic organisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20theory%20based%20models%20for%20protein%20translation%20initiation%20in%20prokaryotic%20organisms&rft.jtitle=BioSystems&rft.au=May,%20Elebeoba%20E.&rft.date=2004-08-01&rft.volume=76&rft.issue=1&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2004.05.017&rft_dat=%3Cproquest_cross%3E66847288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66847288&rft_id=info:pmid/15351148&rft_els_id=S0303264704000851&rfr_iscdi=true |