Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides

Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2009-02, Vol.71 (3), p.717-729
Hauptverfasser: Dangel, Andrew W., Tabita, F. Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 3
container_start_page 717
container_title Molecular microbiology
container_volume 71
creator Dangel, Andrew W.
Tabita, F. Robert
description Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.
doi_str_mv 10.1111/j.1365-2958.2008.06558.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66843535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629616651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZCFBAKJLOM4dpwDh9WKlkqtqFY9cLPsZNLNKhundqK2t176BLxhnwSnuyoSF7APHtnf_LL9EUIZzFkcXzZzxqVI0kKoeQqg5iBFLG-ekdnTwXMyg0JAwlX684C8CmEDwDhI_pIcsALynOVsRu7PvRuw6R7ufvW7ijbdgN6UQ-O6QC0O14gdXVq7oqar6AovF_TjufeLT5_p4E0XSt_0E2xa6vFybM3gfKCupsMaaWktdT36KSturdaucjaGo6ehX5t40FQYXpMXtWkDvtmvh-Ti6NvF8nty-uP4ZLk4TUoBQiUCjMyVFRYzYEZxlhkrC2arvFAZIHCZCgDMMwPWKplbzoywmZIl5FLV_JB82MXGp16NGAa9bUKJbWs6dGPQUqqMizj_BabARcpVEcF3f4EbN_r4FUGzQgrgKocIqR1UeheCx1r3vtkaf6sZ6Mmn3uhJm5606cmnfvSpb2Lr233-aLdY_WncC4zA-z1gQmnaOgopm_DEpYyBYqmM3Ncdd920ePvfF9BnZydTxX8Dds68bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196503870</pqid></control><display><type>article</type><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Dangel, Andrew W. ; Tabita, F. Robert</creator><creatorcontrib>Dangel, Andrew W. ; Tabita, F. Robert</creatorcontrib><description>Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2008.06558.x</identifier><identifier>PMID: 19077171</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Binding Sites ; Biological and medical sciences ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes ; Microbiology ; Miscellaneous ; Operon ; Promoter Regions, Genetic ; Protein Binding ; Proteins ; Rhodobacter sphaeroides ; Rhodobacter sphaeroides - genetics ; Rhodobacter sphaeroides - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular microbiology, 2009-02, Vol.71 (3), p.717-729</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</citedby><cites>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2008.06558.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2008.06558.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21108126$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19077171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dangel, Andrew W.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Operon</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rhodobacter sphaeroides</subject><subject>Rhodobacter sphaeroides - genetics</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EokvhFZCFBAKJLOM4dpwDh9WKlkqtqFY9cLPsZNLNKhundqK2t176BLxhnwSnuyoSF7APHtnf_LL9EUIZzFkcXzZzxqVI0kKoeQqg5iBFLG-ekdnTwXMyg0JAwlX684C8CmEDwDhI_pIcsALynOVsRu7PvRuw6R7ufvW7ijbdgN6UQ-O6QC0O14gdXVq7oqar6AovF_TjufeLT5_p4E0XSt_0E2xa6vFybM3gfKCupsMaaWktdT36KSturdaucjaGo6ehX5t40FQYXpMXtWkDvtmvh-Ti6NvF8nty-uP4ZLk4TUoBQiUCjMyVFRYzYEZxlhkrC2arvFAZIHCZCgDMMwPWKplbzoywmZIl5FLV_JB82MXGp16NGAa9bUKJbWs6dGPQUqqMizj_BabARcpVEcF3f4EbN_r4FUGzQgrgKocIqR1UeheCx1r3vtkaf6sZ6Mmn3uhJm5606cmnfvSpb2Lr233-aLdY_WncC4zA-z1gQmnaOgopm_DEpYyBYqmM3Ncdd920ePvfF9BnZydTxX8Dds68bg</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Dangel, Andrew W.</creator><creator>Tabita, F. Robert</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200902</creationdate><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><author>Dangel, Andrew W. ; Tabita, F. Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Operon</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rhodobacter sphaeroides</topic><topic>Rhodobacter sphaeroides - genetics</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dangel, Andrew W.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dangel, Andrew W.</au><au>Tabita, F. Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2009-02</date><risdate>2009</risdate><volume>71</volume><issue>3</issue><spage>717</spage><epage>729</epage><pages>717-729</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19077171</pmid><doi>10.1111/j.1365-2958.2008.06558.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2009-02, Vol.71 (3), p.717-729
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_66843535
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Binding Sites
Biological and medical sciences
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Genes
Microbiology
Miscellaneous
Operon
Promoter Regions, Genetic
Protein Binding
Proteins
Rhodobacter sphaeroides
Rhodobacter sphaeroides - genetics
Rhodobacter sphaeroides - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%E2%80%93protein%20interactions%20between%20CbbR%20and%20RegA%20(PrrA),%20transcriptional%20regulators%20of%20the%20cbb%20operons%20of%20Rhodobacter%20sphaeroides&rft.jtitle=Molecular%20microbiology&rft.au=Dangel,%20Andrew%20W.&rft.date=2009-02&rft.volume=71&rft.issue=3&rft.spage=717&rft.epage=729&rft.pages=717-729&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2008.06558.x&rft_dat=%3Cproquest_cross%3E1629616651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196503870&rft_id=info:pmid/19077171&rfr_iscdi=true