Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides
Summary CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2009-02, Vol.71 (3), p.717-729 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 3 |
container_start_page | 717 |
container_title | Molecular microbiology |
container_volume | 71 |
creator | Dangel, Andrew W. Tabita, F. Robert |
description | Summary
CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides. |
doi_str_mv | 10.1111/j.1365-2958.2008.06558.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66843535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629616651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZCFBAKJLOM4dpwDh9WKlkqtqFY9cLPsZNLNKhundqK2t176BLxhnwSnuyoSF7APHtnf_LL9EUIZzFkcXzZzxqVI0kKoeQqg5iBFLG-ekdnTwXMyg0JAwlX684C8CmEDwDhI_pIcsALynOVsRu7PvRuw6R7ufvW7ijbdgN6UQ-O6QC0O14gdXVq7oqar6AovF_TjufeLT5_p4E0XSt_0E2xa6vFybM3gfKCupsMaaWktdT36KSturdaucjaGo6ehX5t40FQYXpMXtWkDvtmvh-Ti6NvF8nty-uP4ZLk4TUoBQiUCjMyVFRYzYEZxlhkrC2arvFAZIHCZCgDMMwPWKplbzoywmZIl5FLV_JB82MXGp16NGAa9bUKJbWs6dGPQUqqMizj_BabARcpVEcF3f4EbN_r4FUGzQgrgKocIqR1UeheCx1r3vtkaf6sZ6Mmn3uhJm5606cmnfvSpb2Lr233-aLdY_WncC4zA-z1gQmnaOgopm_DEpYyBYqmM3Ncdd920ePvfF9BnZydTxX8Dds68bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196503870</pqid></control><display><type>article</type><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Dangel, Andrew W. ; Tabita, F. Robert</creator><creatorcontrib>Dangel, Andrew W. ; Tabita, F. Robert</creatorcontrib><description>Summary
CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2008.06558.x</identifier><identifier>PMID: 19077171</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Binding Sites ; Biological and medical sciences ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes ; Microbiology ; Miscellaneous ; Operon ; Promoter Regions, Genetic ; Protein Binding ; Proteins ; Rhodobacter sphaeroides ; Rhodobacter sphaeroides - genetics ; Rhodobacter sphaeroides - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular microbiology, 2009-02, Vol.71 (3), p.717-729</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</citedby><cites>FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2008.06558.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2008.06558.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21108126$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19077171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dangel, Andrew W.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</description><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Operon</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rhodobacter sphaeroides</subject><subject>Rhodobacter sphaeroides - genetics</subject><subject>Rhodobacter sphaeroides - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EokvhFZCFBAKJLOM4dpwDh9WKlkqtqFY9cLPsZNLNKhundqK2t176BLxhnwSnuyoSF7APHtnf_LL9EUIZzFkcXzZzxqVI0kKoeQqg5iBFLG-ekdnTwXMyg0JAwlX684C8CmEDwDhI_pIcsALynOVsRu7PvRuw6R7ufvW7ijbdgN6UQ-O6QC0O14gdXVq7oqar6AovF_TjufeLT5_p4E0XSt_0E2xa6vFybM3gfKCupsMaaWktdT36KSturdaucjaGo6ehX5t40FQYXpMXtWkDvtmvh-Ti6NvF8nty-uP4ZLk4TUoBQiUCjMyVFRYzYEZxlhkrC2arvFAZIHCZCgDMMwPWKplbzoywmZIl5FLV_JB82MXGp16NGAa9bUKJbWs6dGPQUqqMizj_BabARcpVEcF3f4EbN_r4FUGzQgrgKocIqR1UeheCx1r3vtkaf6sZ6Mmn3uhJm5606cmnfvSpb2Lr233-aLdY_WncC4zA-z1gQmnaOgopm_DEpYyBYqmM3Ncdd920ePvfF9BnZydTxX8Dds68bg</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Dangel, Andrew W.</creator><creator>Tabita, F. Robert</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200902</creationdate><title>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</title><author>Dangel, Andrew W. ; Tabita, F. Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-50a678b5be401a8314ab691bd79840e0362500e74a0bb867b31a5b486c0768f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Operon</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rhodobacter sphaeroides</topic><topic>Rhodobacter sphaeroides - genetics</topic><topic>Rhodobacter sphaeroides - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dangel, Andrew W.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dangel, Andrew W.</au><au>Tabita, F. Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2009-02</date><risdate>2009</risdate><volume>71</volume><issue>3</issue><spage>717</spage><epage>729</epage><pages>717-729</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
CbbR and RegA (PrrA) are transcriptional regulators of the cbbI and cbbII (Calvin–Benson–Bassham CO2 fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbbI promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross‐linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbbI promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbbI promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbbI promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbbI operon genes of R. sphaeroides.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19077171</pmid><doi>10.1111/j.1365-2958.2008.06558.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2009-02, Vol.71 (3), p.717-729 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_66843535 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Binding Sites Biological and medical sciences Deoxyribonucleic acid DNA DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Genes Microbiology Miscellaneous Operon Promoter Regions, Genetic Protein Binding Proteins Rhodobacter sphaeroides Rhodobacter sphaeroides - genetics Rhodobacter sphaeroides - metabolism Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | Protein–protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%E2%80%93protein%20interactions%20between%20CbbR%20and%20RegA%20(PrrA),%20transcriptional%20regulators%20of%20the%20cbb%20operons%20of%20Rhodobacter%20sphaeroides&rft.jtitle=Molecular%20microbiology&rft.au=Dangel,%20Andrew%20W.&rft.date=2009-02&rft.volume=71&rft.issue=3&rft.spage=717&rft.epage=729&rft.pages=717-729&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2008.06558.x&rft_dat=%3Cproquest_cross%3E1629616651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196503870&rft_id=info:pmid/19077171&rfr_iscdi=true |