A first-order Mott transition in LixCoO2

Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in Li x CoO 2 , the classic material for rechargeable Li batteries, with a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2004-09, Vol.3 (9), p.627-631
Hauptverfasser: Marianetti, C. A., Kotliar, G., Ceder, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 9
container_start_page 627
container_title Nature materials
container_volume 3
creator Marianetti, C. A.
Kotliar, G.
Ceder, G.
description Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in Li x CoO 2 , the classic material for rechargeable Li batteries, with a metallic state for x < 0.75 and insulating for x > 0.95. Using density functional theory calculations on large supercells, we identify the mechanism of this hereto anomalous metal–insulator transition as a Mott transition of impurities. Density functional theory demonstrates that for dilute Li-vacancy concentrations, the vacancy binds a hole and forms impurity states yielding a Mott insulator. The unique feature of Li x CoO 2 as compared with traditional doped semiconductors, such as Si:P, is the high mobility of the Li vacancies, which allows them to rearrange into two distinct phases at the temperature of the metal–insulator transition.
doi_str_mv 10.1038/nmat1178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66840959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>986054651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-8c95cc58cc3e65c4181596cc9c0bc058598e7a232cd6de74474a179bad07f65f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqvgL5DFg9TDaibfOZbiF1R60fOSZrOypbupSRb037ulKwU9eBhmYB7eYR6ELgDfAqbqrm1MApDqAJ0AkyJnQuDDYQYgZIROY1xhTIBzcYxGwCkhfZ2gyTSr6hBT7kPpQvbiU8pSMG2sU-3brG6zef058wtyho4qs47ufOhj9PZw_zp7yueLx-fZdJ5bKiHlympuLVfWUie4ZaCAa2GttnhpMVdcKycNocSWonSSMckMSL00JZaV4BUdo-td7ib4j87FVDR1tG69Nq3zXSyEUAxrrv8FiQKhaa9njK5-gSvfhbZ_oiCESC4Y26ZNdpANPsbgqmIT6saErwJwsXVc_Dju0cshr1s2rtyDg9QeuNkBsV-17y7sD_4J-wYceYIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222756449</pqid></control><display><type>article</type><title>A first-order Mott transition in LixCoO2</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Marianetti, C. A. ; Kotliar, G. ; Ceder, G.</creator><creatorcontrib>Marianetti, C. A. ; Kotliar, G. ; Ceder, G.</creatorcontrib><description>Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in Li x CoO 2 , the classic material for rechargeable Li batteries, with a metallic state for x &lt; 0.75 and insulating for x &gt; 0.95. Using density functional theory calculations on large supercells, we identify the mechanism of this hereto anomalous metal–insulator transition as a Mott transition of impurities. Density functional theory demonstrates that for dilute Li-vacancy concentrations, the vacancy binds a hole and forms impurity states yielding a Mott insulator. The unique feature of Li x CoO 2 as compared with traditional doped semiconductors, such as Si:P, is the high mobility of the Li vacancies, which allows them to rearrange into two distinct phases at the temperature of the metal–insulator transition.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1178</identifier><identifier>PMID: 15322532</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Cobalt - analysis ; Cobalt - chemistry ; Condensed Matter Physics ; Electric Conductivity ; Electrochemistry - methods ; Macromolecular Substances ; Materials Science ; Materials Testing - methods ; Metals ; Molecular Conformation ; Nanotechnology ; Nanotechnology - methods ; Optical and Electronic Materials ; Oxides - analysis ; Oxides - chemistry ; Semiconductors</subject><ispartof>Nature materials, 2004-09, Vol.3 (9), p.627-631</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-8c95cc58cc3e65c4181596cc9c0bc058598e7a232cd6de74474a179bad07f65f3</citedby><cites>FETCH-LOGICAL-c371t-8c95cc58cc3e65c4181596cc9c0bc058598e7a232cd6de74474a179bad07f65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1178$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1178$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marianetti, C. A.</creatorcontrib><creatorcontrib>Kotliar, G.</creatorcontrib><creatorcontrib>Ceder, G.</creatorcontrib><title>A first-order Mott transition in LixCoO2</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in Li x CoO 2 , the classic material for rechargeable Li batteries, with a metallic state for x &lt; 0.75 and insulating for x &gt; 0.95. Using density functional theory calculations on large supercells, we identify the mechanism of this hereto anomalous metal–insulator transition as a Mott transition of impurities. Density functional theory demonstrates that for dilute Li-vacancy concentrations, the vacancy binds a hole and forms impurity states yielding a Mott insulator. The unique feature of Li x CoO 2 as compared with traditional doped semiconductors, such as Si:P, is the high mobility of the Li vacancies, which allows them to rearrange into two distinct phases at the temperature of the metal–insulator transition.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt - analysis</subject><subject>Cobalt - chemistry</subject><subject>Condensed Matter Physics</subject><subject>Electric Conductivity</subject><subject>Electrochemistry - methods</subject><subject>Macromolecular Substances</subject><subject>Materials Science</subject><subject>Materials Testing - methods</subject><subject>Metals</subject><subject>Molecular Conformation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Optical and Electronic Materials</subject><subject>Oxides - analysis</subject><subject>Oxides - chemistry</subject><subject>Semiconductors</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMoVqvgL5DFg9TDaibfOZbiF1R60fOSZrOypbupSRb037ulKwU9eBhmYB7eYR6ELgDfAqbqrm1MApDqAJ0AkyJnQuDDYQYgZIROY1xhTIBzcYxGwCkhfZ2gyTSr6hBT7kPpQvbiU8pSMG2sU-3brG6zef058wtyho4qs47ufOhj9PZw_zp7yueLx-fZdJ5bKiHlympuLVfWUie4ZaCAa2GttnhpMVdcKycNocSWonSSMckMSL00JZaV4BUdo-td7ib4j87FVDR1tG69Nq3zXSyEUAxrrv8FiQKhaa9njK5-gSvfhbZ_oiCESC4Y26ZNdpANPsbgqmIT6saErwJwsXVc_Dju0cshr1s2rtyDg9QeuNkBsV-17y7sD_4J-wYceYIs</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Marianetti, C. A.</creator><creator>Kotliar, G.</creator><creator>Ceder, G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>A first-order Mott transition in LixCoO2</title><author>Marianetti, C. A. ; Kotliar, G. ; Ceder, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-8c95cc58cc3e65c4181596cc9c0bc058598e7a232cd6de74474a179bad07f65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt - analysis</topic><topic>Cobalt - chemistry</topic><topic>Condensed Matter Physics</topic><topic>Electric Conductivity</topic><topic>Electrochemistry - methods</topic><topic>Macromolecular Substances</topic><topic>Materials Science</topic><topic>Materials Testing - methods</topic><topic>Metals</topic><topic>Molecular Conformation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Optical and Electronic Materials</topic><topic>Oxides - analysis</topic><topic>Oxides - chemistry</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marianetti, C. A.</creatorcontrib><creatorcontrib>Kotliar, G.</creatorcontrib><creatorcontrib>Ceder, G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marianetti, C. A.</au><au>Kotliar, G.</au><au>Ceder, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first-order Mott transition in LixCoO2</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>3</volume><issue>9</issue><spage>627</spage><epage>631</epage><pages>627-631</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Despite many years of experimental searches for a first-order Mott transition in crystalline-doped semiconductors, none have been found. Extensive experimental work has characterized a first-order metal–insulator transition in Li x CoO 2 , the classic material for rechargeable Li batteries, with a metallic state for x &lt; 0.75 and insulating for x &gt; 0.95. Using density functional theory calculations on large supercells, we identify the mechanism of this hereto anomalous metal–insulator transition as a Mott transition of impurities. Density functional theory demonstrates that for dilute Li-vacancy concentrations, the vacancy binds a hole and forms impurity states yielding a Mott insulator. The unique feature of Li x CoO 2 as compared with traditional doped semiconductors, such as Si:P, is the high mobility of the Li vacancies, which allows them to rearrange into two distinct phases at the temperature of the metal–insulator transition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15322532</pmid><doi>10.1038/nmat1178</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2004-09, Vol.3 (9), p.627-631
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_66840959
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Biomaterials
Chemistry and Materials Science
Cobalt - analysis
Cobalt - chemistry
Condensed Matter Physics
Electric Conductivity
Electrochemistry - methods
Macromolecular Substances
Materials Science
Materials Testing - methods
Metals
Molecular Conformation
Nanotechnology
Nanotechnology - methods
Optical and Electronic Materials
Oxides - analysis
Oxides - chemistry
Semiconductors
title A first-order Mott transition in LixCoO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first-order%20Mott%20transition%20in%20LixCoO2&rft.jtitle=Nature%20materials&rft.au=Marianetti,%20C.%20A.&rft.date=2004-09-01&rft.volume=3&rft.issue=9&rft.spage=627&rft.epage=631&rft.pages=627-631&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1178&rft_dat=%3Cproquest_cross%3E986054651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222756449&rft_id=info:pmid/15322532&rfr_iscdi=true