Carbon nanotube filters
Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes,...
Gespeichert in:
Veröffentlicht in: | Nature materials 2004-09, Vol.3 (9), p.610-614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 9 |
container_start_page | 610 |
container_title | Nature materials |
container_volume | 3 |
creator | Srivastava, O. N Ajayan, P. M Srivastava, A Talapatra, S Vajtai, R |
description | Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (∼25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially. |
doi_str_mv | 10.1038/nmat1192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66839134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66839134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-8b9c9cbaa14920c1df5408b6f002a95fe73a79efbb064cdf6c101e820e39afa53</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgiq1V8OZNigfRw2omm2SToxS_oOBFzyFJE2nZzdZk9-C_N9K1BUE8ZSAP7zAvQqeAbwCX4jY0ugOQZA-NgVa8oJzj_WEGIGSEjlJaYUyAMX6IRsCI4BVjY3Q209G0YRp0aLveuKlf1p2L6RgdeF0ndzK8E_T2cP86eyrmL4_Ps7t5YWkJXSGMtNIarYFKgi0sPKNYGO7zLi2Zd1WpK-m8MZhTu_DcAgYnCHal1F6zcoIuN7nr2H70LnWqWSbr6loH1_ZJcS5KCSX9FxIBlBCMM7z4BVdtH0M-QhFCKlZRqDK62iAb25Si82odl42Onwqw-q5U_VSa6fmQ15vGLXZw6DCD6w1I-Su8u7hb-HdY0F0f3TZsC74AbwaH4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222757417</pqid></control><display><type>article</type><title>Carbon nanotube filters</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Srivastava, O. N ; Ajayan, P. M ; Srivastava, A ; Talapatra, S ; Vajtai, R</creator><creatorcontrib>Srivastava, O. N ; Ajayan, P. M ; Srivastava, A ; Talapatra, S ; Vajtai, R</creatorcontrib><description>Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (∼25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1192</identifier><identifier>PMID: 15286755</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Carbon ; Chemistry and Materials Science ; Condensed Matter Physics ; Contaminants ; Crude oil ; Distillation ; E coli ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli - isolation & purification ; Fabrication ; Filters ; Filtration ; Hydrocarbons ; letter ; Materials Science ; Membranes ; Microfluidics - instrumentation ; Microfluidics - methods ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; Optical and Electronic Materials ; Petroleum - analysis ; Petroleum hydrocarbons ; Poliovirus - isolation & purification ; Polymers ; Surface area ; Ultrafiltration - instrumentation ; Ultrafiltration - methods ; Water Microbiology ; Water Purification - instrumentation</subject><ispartof>Nature materials, 2004-09, Vol.3 (9), p.610-614</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-8b9c9cbaa14920c1df5408b6f002a95fe73a79efbb064cdf6c101e820e39afa53</citedby><cites>FETCH-LOGICAL-c431t-8b9c9cbaa14920c1df5408b6f002a95fe73a79efbb064cdf6c101e820e39afa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1192$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1192$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15286755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srivastava, O. N</creatorcontrib><creatorcontrib>Ajayan, P. M</creatorcontrib><creatorcontrib>Srivastava, A</creatorcontrib><creatorcontrib>Talapatra, S</creatorcontrib><creatorcontrib>Vajtai, R</creatorcontrib><title>Carbon nanotube filters</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (∼25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.</description><subject>Biomaterials</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Contaminants</subject><subject>Crude oil</subject><subject>Distillation</subject><subject>E coli</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli - isolation & purification</subject><subject>Fabrication</subject><subject>Filters</subject><subject>Filtration</subject><subject>Hydrocarbons</subject><subject>letter</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>Optical and Electronic Materials</subject><subject>Petroleum - analysis</subject><subject>Petroleum hydrocarbons</subject><subject>Poliovirus - isolation & purification</subject><subject>Polymers</subject><subject>Surface area</subject><subject>Ultrafiltration - instrumentation</subject><subject>Ultrafiltration - methods</subject><subject>Water Microbiology</subject><subject>Water Purification - instrumentation</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgiq1V8OZNigfRw2omm2SToxS_oOBFzyFJE2nZzdZk9-C_N9K1BUE8ZSAP7zAvQqeAbwCX4jY0ugOQZA-NgVa8oJzj_WEGIGSEjlJaYUyAMX6IRsCI4BVjY3Q209G0YRp0aLveuKlf1p2L6RgdeF0ndzK8E_T2cP86eyrmL4_Ps7t5YWkJXSGMtNIarYFKgi0sPKNYGO7zLi2Zd1WpK-m8MZhTu_DcAgYnCHal1F6zcoIuN7nr2H70LnWqWSbr6loH1_ZJcS5KCSX9FxIBlBCMM7z4BVdtH0M-QhFCKlZRqDK62iAb25Si82odl42Onwqw-q5U_VSa6fmQ15vGLXZw6DCD6w1I-Su8u7hb-HdY0F0f3TZsC74AbwaH4g</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Srivastava, O. N</creator><creator>Ajayan, P. M</creator><creator>Srivastava, A</creator><creator>Talapatra, S</creator><creator>Vajtai, R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Carbon nanotube filters</title><author>Srivastava, O. N ; Ajayan, P. M ; Srivastava, A ; Talapatra, S ; Vajtai, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-8b9c9cbaa14920c1df5408b6f002a95fe73a79efbb064cdf6c101e820e39afa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomaterials</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Contaminants</topic><topic>Crude oil</topic><topic>Distillation</topic><topic>E coli</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli - isolation & purification</topic><topic>Fabrication</topic><topic>Filters</topic><topic>Filtration</topic><topic>Hydrocarbons</topic><topic>letter</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>Optical and Electronic Materials</topic><topic>Petroleum - analysis</topic><topic>Petroleum hydrocarbons</topic><topic>Poliovirus - isolation & purification</topic><topic>Polymers</topic><topic>Surface area</topic><topic>Ultrafiltration - instrumentation</topic><topic>Ultrafiltration - methods</topic><topic>Water Microbiology</topic><topic>Water Purification - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, O. N</creatorcontrib><creatorcontrib>Ajayan, P. M</creatorcontrib><creatorcontrib>Srivastava, A</creatorcontrib><creatorcontrib>Talapatra, S</creatorcontrib><creatorcontrib>Vajtai, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, O. N</au><au>Ajayan, P. M</au><au>Srivastava, A</au><au>Talapatra, S</au><au>Vajtai, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube filters</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>3</volume><issue>9</issue><spage>610</spage><epage>614</epage><pages>610-614</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (∼25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15286755</pmid><doi>10.1038/nmat1192</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2004-09, Vol.3 (9), p.610-614 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_66839134 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Biomaterials Carbon Chemistry and Materials Science Condensed Matter Physics Contaminants Crude oil Distillation E coli Equipment Design Equipment Failure Analysis Escherichia coli - isolation & purification Fabrication Filters Filtration Hydrocarbons letter Materials Science Membranes Microfluidics - instrumentation Microfluidics - methods Nanotechnology Nanotechnology - instrumentation Nanotechnology - methods Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure Optical and Electronic Materials Petroleum - analysis Petroleum hydrocarbons Poliovirus - isolation & purification Polymers Surface area Ultrafiltration - instrumentation Ultrafiltration - methods Water Microbiology Water Purification - instrumentation |
title | Carbon nanotube filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20filters&rft.jtitle=Nature%20materials&rft.au=Srivastava,%20O.%20N&rft.date=2004-09-01&rft.volume=3&rft.issue=9&rft.spage=610&rft.epage=614&rft.pages=610-614&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1192&rft_dat=%3Cproquest_cross%3E66839134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222757417&rft_id=info:pmid/15286755&rfr_iscdi=true |