Surface-plasmon-enhanced light emitters based on InGaN quantum wells

Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2004-09, Vol.3 (9), p.601-605
Hauptverfasser: Scherer, Axel, Okamoto, Koichi, Niki, Isamu, Shvartser, Alexander, Narukawa, Yukio, Mukai, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue 9
container_start_page 601
container_title Nature materials
container_volume 3
creator Scherer, Axel
Okamoto, Koichi
Niki, Isamu
Shvartser, Alexander
Narukawa, Yukio
Mukai, Takashi
description Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.
doi_str_mv 10.1038/nmat1198
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_66835953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>986054701</sourcerecordid><originalsourceid>FETCH-LOGICAL-n2008-2514aeb09f07e0969f053d1974990c2d1451ed07a1d7db3eaf03b3d1d78112b73</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgiptT8C-Q4kHwUH1JmqQ5ytQ5GHpQzyVt0q2jTbemQfzvjewXePH0QvLhS957CF1iuMNA03vbqB5jmR6hIU4EjxPO4Xh7xpiQATpzbglAMGP8FA0wo4Qwyobo8d13pSpMvKqVa1obG7tQtjA6qqv5oo9MU_W96VyUKxcuWxtN7US9RmuvbO-b6MvUtTtHJ6WqnbnY1hH6fH76GL_Es7fJdPwwiy0BSGPCcKJMDrIEYUDyUBnVWIpESiiIxgnDRoNQWAudU6NKoHkAWqShiVzQEbrZ5K66du2N67OmckX4gbKm9S7jPKVMMvovJJJSBgz-h2kClAAO8PoPXLa-s6HbjBAiWColD-hqi3zeGJ2tuqpR3Xe2G3cAtxvgwpOdm-6QgiH7XWW2W-UhzKred2Yftgc_qPOXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222758996</pqid></control><display><type>article</type><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</creator><creatorcontrib>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</creatorcontrib><description>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1198</identifier><identifier>PMID: 15322535</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aluminum ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization - methods ; Energy Transfer ; Equipment Design ; Equipment Failure Analysis ; Gallium - chemistry ; Gold ; Indium - chemistry ; letter ; Light ; Light sources ; Lighting ; Materials Science ; Materials Testing ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Optical and Electronic Materials ; Optics and Photonics - instrumentation ; Photochemistry - instrumentation ; Quantum Theory ; Semiconductors ; Silver ; Surface Plasmon Resonance - instrumentation ; Surface Plasmon Resonance - methods ; Surface Properties ; Temperature ; Wells</subject><ispartof>Nature materials, 2004-09, Vol.3 (9), p.601-605</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1198$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1198$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scherer, Axel</creatorcontrib><creatorcontrib>Okamoto, Koichi</creatorcontrib><creatorcontrib>Niki, Isamu</creatorcontrib><creatorcontrib>Shvartser, Alexander</creatorcontrib><creatorcontrib>Narukawa, Yukio</creatorcontrib><creatorcontrib>Mukai, Takashi</creatorcontrib><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</description><subject>Aluminum</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization - methods</subject><subject>Energy Transfer</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Gallium - chemistry</subject><subject>Gold</subject><subject>Indium - chemistry</subject><subject>letter</subject><subject>Light</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Optical and Electronic Materials</subject><subject>Optics and Photonics - instrumentation</subject><subject>Photochemistry - instrumentation</subject><subject>Quantum Theory</subject><subject>Semiconductors</subject><subject>Silver</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Wells</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0c9LwzAUB_AgiptT8C-Q4kHwUH1JmqQ5ytQ5GHpQzyVt0q2jTbemQfzvjewXePH0QvLhS957CF1iuMNA03vbqB5jmR6hIU4EjxPO4Xh7xpiQATpzbglAMGP8FA0wo4Qwyobo8d13pSpMvKqVa1obG7tQtjA6qqv5oo9MU_W96VyUKxcuWxtN7US9RmuvbO-b6MvUtTtHJ6WqnbnY1hH6fH76GL_Es7fJdPwwiy0BSGPCcKJMDrIEYUDyUBnVWIpESiiIxgnDRoNQWAudU6NKoHkAWqShiVzQEbrZ5K66du2N67OmckX4gbKm9S7jPKVMMvovJJJSBgz-h2kClAAO8PoPXLa-s6HbjBAiWColD-hqi3zeGJ2tuqpR3Xe2G3cAtxvgwpOdm-6QgiH7XWW2W-UhzKred2Yftgc_qPOXBA</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Scherer, Axel</creator><creator>Okamoto, Koichi</creator><creator>Niki, Isamu</creator><creator>Shvartser, Alexander</creator><creator>Narukawa, Yukio</creator><creator>Mukai, Takashi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>7QF</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><author>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n2008-2514aeb09f07e0969f053d1974990c2d1451ed07a1d7db3eaf03b3d1d78112b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization - methods</topic><topic>Energy Transfer</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Gallium - chemistry</topic><topic>Gold</topic><topic>Indium - chemistry</topic><topic>letter</topic><topic>Light</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Optical and Electronic Materials</topic><topic>Optics and Photonics - instrumentation</topic><topic>Photochemistry - instrumentation</topic><topic>Quantum Theory</topic><topic>Semiconductors</topic><topic>Silver</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherer, Axel</creatorcontrib><creatorcontrib>Okamoto, Koichi</creatorcontrib><creatorcontrib>Niki, Isamu</creatorcontrib><creatorcontrib>Shvartser, Alexander</creatorcontrib><creatorcontrib>Narukawa, Yukio</creatorcontrib><creatorcontrib>Mukai, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherer, Axel</au><au>Okamoto, Koichi</au><au>Niki, Isamu</au><au>Shvartser, Alexander</au><au>Narukawa, Yukio</au><au>Mukai, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-09</date><risdate>2004</risdate><volume>3</volume><issue>9</issue><spage>601</spage><epage>605</epage><pages>601-605</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15322535</pmid><doi>10.1038/nmat1198</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2004-09, Vol.3 (9), p.601-605
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_66835953
source MEDLINE; SpringerLink Journals; Nature
subjects Aluminum
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystallization - methods
Energy Transfer
Equipment Design
Equipment Failure Analysis
Gallium - chemistry
Gold
Indium - chemistry
letter
Light
Light sources
Lighting
Materials Science
Materials Testing
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology - methods
Optical and Electronic Materials
Optics and Photonics - instrumentation
Photochemistry - instrumentation
Quantum Theory
Semiconductors
Silver
Surface Plasmon Resonance - instrumentation
Surface Plasmon Resonance - methods
Surface Properties
Temperature
Wells
title Surface-plasmon-enhanced light emitters based on InGaN quantum wells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-plasmon-enhanced%20light%20emitters%20based%20on%20InGaN%20quantum%20wells&rft.jtitle=Nature%20materials&rft.au=Scherer,%20Axel&rft.date=2004-09&rft.volume=3&rft.issue=9&rft.spage=601&rft.epage=605&rft.pages=601-605&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1198&rft_dat=%3Cproquest_pubme%3E986054701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222758996&rft_id=info:pmid/15322535&rfr_iscdi=true