Surface-plasmon-enhanced light emitters based on InGaN quantum wells
Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency t...
Gespeichert in:
Veröffentlicht in: | Nature materials 2004-09, Vol.3 (9), p.601-605 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | 9 |
container_start_page | 601 |
container_title | Nature materials |
container_volume | 3 |
creator | Scherer, Axel Okamoto, Koichi Niki, Isamu Shvartser, Alexander Narukawa, Yukio Mukai, Takashi |
description | Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources. |
doi_str_mv | 10.1038/nmat1198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_66835953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>986054701</sourcerecordid><originalsourceid>FETCH-LOGICAL-n2008-2514aeb09f07e0969f053d1974990c2d1451ed07a1d7db3eaf03b3d1d78112b73</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgiptT8C-Q4kHwUH1JmqQ5ytQ5GHpQzyVt0q2jTbemQfzvjewXePH0QvLhS957CF1iuMNA03vbqB5jmR6hIU4EjxPO4Xh7xpiQATpzbglAMGP8FA0wo4Qwyobo8d13pSpMvKqVa1obG7tQtjA6qqv5oo9MU_W96VyUKxcuWxtN7US9RmuvbO-b6MvUtTtHJ6WqnbnY1hH6fH76GL_Es7fJdPwwiy0BSGPCcKJMDrIEYUDyUBnVWIpESiiIxgnDRoNQWAudU6NKoHkAWqShiVzQEbrZ5K66du2N67OmckX4gbKm9S7jPKVMMvovJJJSBgz-h2kClAAO8PoPXLa-s6HbjBAiWColD-hqi3zeGJ2tuqpR3Xe2G3cAtxvgwpOdm-6QgiH7XWW2W-UhzKred2Yftgc_qPOXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222758996</pqid></control><display><type>article</type><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</creator><creatorcontrib>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</creatorcontrib><description>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1198</identifier><identifier>PMID: 15322535</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aluminum ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystallization - methods ; Energy Transfer ; Equipment Design ; Equipment Failure Analysis ; Gallium - chemistry ; Gold ; Indium - chemistry ; letter ; Light ; Light sources ; Lighting ; Materials Science ; Materials Testing ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Optical and Electronic Materials ; Optics and Photonics - instrumentation ; Photochemistry - instrumentation ; Quantum Theory ; Semiconductors ; Silver ; Surface Plasmon Resonance - instrumentation ; Surface Plasmon Resonance - methods ; Surface Properties ; Temperature ; Wells</subject><ispartof>Nature materials, 2004-09, Vol.3 (9), p.601-605</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1198$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1198$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scherer, Axel</creatorcontrib><creatorcontrib>Okamoto, Koichi</creatorcontrib><creatorcontrib>Niki, Isamu</creatorcontrib><creatorcontrib>Shvartser, Alexander</creatorcontrib><creatorcontrib>Narukawa, Yukio</creatorcontrib><creatorcontrib>Mukai, Takashi</creatorcontrib><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</description><subject>Aluminum</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystallization - methods</subject><subject>Energy Transfer</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Gallium - chemistry</subject><subject>Gold</subject><subject>Indium - chemistry</subject><subject>letter</subject><subject>Light</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Optical and Electronic Materials</subject><subject>Optics and Photonics - instrumentation</subject><subject>Photochemistry - instrumentation</subject><subject>Quantum Theory</subject><subject>Semiconductors</subject><subject>Silver</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Wells</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0c9LwzAUB_AgiptT8C-Q4kHwUH1JmqQ5ytQ5GHpQzyVt0q2jTbemQfzvjewXePH0QvLhS957CF1iuMNA03vbqB5jmR6hIU4EjxPO4Xh7xpiQATpzbglAMGP8FA0wo4Qwyobo8d13pSpMvKqVa1obG7tQtjA6qqv5oo9MU_W96VyUKxcuWxtN7US9RmuvbO-b6MvUtTtHJ6WqnbnY1hH6fH76GL_Es7fJdPwwiy0BSGPCcKJMDrIEYUDyUBnVWIpESiiIxgnDRoNQWAudU6NKoHkAWqShiVzQEbrZ5K66du2N67OmckX4gbKm9S7jPKVMMvovJJJSBgz-h2kClAAO8PoPXLa-s6HbjBAiWColD-hqi3zeGJ2tuqpR3Xe2G3cAtxvgwpOdm-6QgiH7XWW2W-UhzKred2Yftgc_qPOXBA</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Scherer, Axel</creator><creator>Okamoto, Koichi</creator><creator>Niki, Isamu</creator><creator>Shvartser, Alexander</creator><creator>Narukawa, Yukio</creator><creator>Mukai, Takashi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>7QF</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</title><author>Scherer, Axel ; Okamoto, Koichi ; Niki, Isamu ; Shvartser, Alexander ; Narukawa, Yukio ; Mukai, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n2008-2514aeb09f07e0969f053d1974990c2d1451ed07a1d7db3eaf03b3d1d78112b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystallization - methods</topic><topic>Energy Transfer</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Gallium - chemistry</topic><topic>Gold</topic><topic>Indium - chemistry</topic><topic>letter</topic><topic>Light</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Optical and Electronic Materials</topic><topic>Optics and Photonics - instrumentation</topic><topic>Photochemistry - instrumentation</topic><topic>Quantum Theory</topic><topic>Semiconductors</topic><topic>Silver</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherer, Axel</creatorcontrib><creatorcontrib>Okamoto, Koichi</creatorcontrib><creatorcontrib>Niki, Isamu</creatorcontrib><creatorcontrib>Shvartser, Alexander</creatorcontrib><creatorcontrib>Narukawa, Yukio</creatorcontrib><creatorcontrib>Mukai, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherer, Axel</au><au>Okamoto, Koichi</au><au>Niki, Isamu</au><au>Shvartser, Alexander</au><au>Narukawa, Yukio</au><au>Mukai, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-plasmon-enhanced light emitters based on InGaN quantum wells</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-09</date><risdate>2004</risdate><volume>3</volume><issue>9</issue><spage>601</spage><epage>605</epage><pages>601-605</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP-QW coupling. Large enhancements of the internal quantum efficiencies (ηint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15322535</pmid><doi>10.1038/nmat1198</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2004-09, Vol.3 (9), p.601-605 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_66835953 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Aluminum Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystallization - methods Energy Transfer Equipment Design Equipment Failure Analysis Gallium - chemistry Gold Indium - chemistry letter Light Light sources Lighting Materials Science Materials Testing Nanotechnology Nanotechnology - instrumentation Nanotechnology - methods Optical and Electronic Materials Optics and Photonics - instrumentation Photochemistry - instrumentation Quantum Theory Semiconductors Silver Surface Plasmon Resonance - instrumentation Surface Plasmon Resonance - methods Surface Properties Temperature Wells |
title | Surface-plasmon-enhanced light emitters based on InGaN quantum wells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-plasmon-enhanced%20light%20emitters%20based%20on%20InGaN%20quantum%20wells&rft.jtitle=Nature%20materials&rft.au=Scherer,%20Axel&rft.date=2004-09&rft.volume=3&rft.issue=9&rft.spage=601&rft.epage=605&rft.pages=601-605&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1198&rft_dat=%3Cproquest_pubme%3E986054701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222758996&rft_id=info:pmid/15322535&rfr_iscdi=true |