Evidence for a size-sensing mechanism in animal cells

Continuously proliferating cells exactly double their mass during each cell cycle. Here we have addressed the controversial question of if and how cell size is sensed and regulated. We used erythroblasts that proliferate under the control of a constitutively active oncogene (v-ErbB) or under the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2004-09, Vol.6 (9), p.899-905
Hauptverfasser: Müllner, Ernst W, Dolznig, Helmut, Grebien, Florian, Sauer, Thomas, Beug, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 9
container_start_page 899
container_title Nature cell biology
container_volume 6
creator Müllner, Ernst W
Dolznig, Helmut
Grebien, Florian
Sauer, Thomas
Beug, Hartmut
description Continuously proliferating cells exactly double their mass during each cell cycle. Here we have addressed the controversial question of if and how cell size is sensed and regulated. We used erythroblasts that proliferate under the control of a constitutively active oncogene (v-ErbB) or under the control of physiological cytokines (stem cell factor, erythropoietin and v-ErbB inhibitor). The oncogene-driven cells proliferated 1.7 times faster and showed a 1.5-fold increase in cell volume. The two phenotypes could be converted into each other 24 h after altering growth factor signalling. The large cells had a higher rate of protein synthesis, together with a shortened G1 phase. Additional experiments with chicken erythroblasts and mouse fibroblasts, synchronized by centrifugal elutriation, provided further evidence that vertebrate cells can respond to cell size alterations (induced either through different growth factor signalling or DNA synthesis inhibitors) by compensatory shortening of the subsequent G1 phase. Taken together, these data suggest that an active size threshold mechanism exists in G1, which induces adjustment of cell-cycle length in the next cycle, thus ensuring maintenance of a proper balance between growth and proliferation rates in vertebrates.
doi_str_mv 10.1038/ncb1166
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66835824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183288335</galeid><sourcerecordid>A183288335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-2b774dd20e6e531f954c500d44a763608c79e3b853e1ccd9781f1c058d1b73c03</originalsourceid><addsrcrecordid>eNpt0d1LHDEQAPBQWqqexb-gZVGw9GHPfCf7KIdaQRD8eA7Z7OwZ2c3aZFesf7057my5UvKQIfxmmMkgdEDwnGCmT4KrCZHyA9olXMmSS1V9XMVSlIpVdAftpfSIMeEcq89ohwhGqRBiF4mzZ99AcFC0QyxskfwrlAlC8mFZ9OAebPCpL3woctDbrnDQdWkffWptl-DL5p6h-_Ozu8XP8ur64nJxelU6TtVY0lop3jQUgwTBSFsJ7gTGDedWSSaxdqoCVmvBgDjXVEqTljgsdENqxRxmM3S8rvsUh18TpNH0Pq06sAGGKRkpNROa8gwP_4GPwxRD7s1QShlXmKmMjtZoaTswPrTDGK1bVTSnRDOqNWMiq_l_VD4N9N4NAVqf37cSfmwlZDPCy7i0U0rm8vZm235fWxeHlCK05inmb42_DcFmtUmz2WSW3zYTTXUPzV-3WV0GX9cg2HGK8Ae8F3gDm5Kdrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222347037</pqid></control><display><type>article</type><title>Evidence for a size-sensing mechanism in animal cells</title><source>MEDLINE</source><source>Nature Journals</source><source>Alma/SFX Local Collection</source><creator>Müllner, Ernst W ; Dolznig, Helmut ; Grebien, Florian ; Sauer, Thomas ; Beug, Hartmut</creator><creatorcontrib>Müllner, Ernst W ; Dolznig, Helmut ; Grebien, Florian ; Sauer, Thomas ; Beug, Hartmut</creatorcontrib><description>Continuously proliferating cells exactly double their mass during each cell cycle. Here we have addressed the controversial question of if and how cell size is sensed and regulated. We used erythroblasts that proliferate under the control of a constitutively active oncogene (v-ErbB) or under the control of physiological cytokines (stem cell factor, erythropoietin and v-ErbB inhibitor). The oncogene-driven cells proliferated 1.7 times faster and showed a 1.5-fold increase in cell volume. The two phenotypes could be converted into each other 24 h after altering growth factor signalling. The large cells had a higher rate of protein synthesis, together with a shortened G1 phase. Additional experiments with chicken erythroblasts and mouse fibroblasts, synchronized by centrifugal elutriation, provided further evidence that vertebrate cells can respond to cell size alterations (induced either through different growth factor signalling or DNA synthesis inhibitors) by compensatory shortening of the subsequent G1 phase. Taken together, these data suggest that an active size threshold mechanism exists in G1, which induces adjustment of cell-cycle length in the next cycle, thus ensuring maintenance of a proper balance between growth and proliferation rates in vertebrates.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1166</identifier><identifier>PMID: 15322555</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Animals ; Breast cancer ; Cell cycle ; Cell Division ; Cell growth ; Cell Physiological Phenomena ; Cell proliferation ; Cell Size ; Chickens ; Deoxyribonucleic acid ; DNA ; Erythroblasts - cytology ; Erythrocytes ; Experiments ; Fibroblasts ; G1 Phase - physiology ; Genetic aspects ; Humans ; Insulin-like growth factors ; Kinetics ; Mice ; Models, Biological ; Physiological aspects ; Physiology ; Protein Biosynthesis ; Protein synthesis ; S Phase - physiology ; Stem cells ; Time Factors ; Vertebrates ; Yeast</subject><ispartof>Nature cell biology, 2004-09, Vol.6 (9), p.899-905</ispartof><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-2b774dd20e6e531f954c500d44a763608c79e3b853e1ccd9781f1c058d1b73c03</citedby><cites>FETCH-LOGICAL-c427t-2b774dd20e6e531f954c500d44a763608c79e3b853e1ccd9781f1c058d1b73c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müllner, Ernst W</creatorcontrib><creatorcontrib>Dolznig, Helmut</creatorcontrib><creatorcontrib>Grebien, Florian</creatorcontrib><creatorcontrib>Sauer, Thomas</creatorcontrib><creatorcontrib>Beug, Hartmut</creatorcontrib><title>Evidence for a size-sensing mechanism in animal cells</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><description>Continuously proliferating cells exactly double their mass during each cell cycle. Here we have addressed the controversial question of if and how cell size is sensed and regulated. We used erythroblasts that proliferate under the control of a constitutively active oncogene (v-ErbB) or under the control of physiological cytokines (stem cell factor, erythropoietin and v-ErbB inhibitor). The oncogene-driven cells proliferated 1.7 times faster and showed a 1.5-fold increase in cell volume. The two phenotypes could be converted into each other 24 h after altering growth factor signalling. The large cells had a higher rate of protein synthesis, together with a shortened G1 phase. Additional experiments with chicken erythroblasts and mouse fibroblasts, synchronized by centrifugal elutriation, provided further evidence that vertebrate cells can respond to cell size alterations (induced either through different growth factor signalling or DNA synthesis inhibitors) by compensatory shortening of the subsequent G1 phase. Taken together, these data suggest that an active size threshold mechanism exists in G1, which induces adjustment of cell-cycle length in the next cycle, thus ensuring maintenance of a proper balance between growth and proliferation rates in vertebrates.</description><subject>Animals</subject><subject>Breast cancer</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Cell growth</subject><subject>Cell Physiological Phenomena</subject><subject>Cell proliferation</subject><subject>Cell Size</subject><subject>Chickens</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Erythroblasts - cytology</subject><subject>Erythrocytes</subject><subject>Experiments</subject><subject>Fibroblasts</subject><subject>G1 Phase - physiology</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Insulin-like growth factors</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>S Phase - physiology</subject><subject>Stem cells</subject><subject>Time Factors</subject><subject>Vertebrates</subject><subject>Yeast</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0d1LHDEQAPBQWqqexb-gZVGw9GHPfCf7KIdaQRD8eA7Z7OwZ2c3aZFesf7057my5UvKQIfxmmMkgdEDwnGCmT4KrCZHyA9olXMmSS1V9XMVSlIpVdAftpfSIMeEcq89ohwhGqRBiF4mzZ99AcFC0QyxskfwrlAlC8mFZ9OAebPCpL3woctDbrnDQdWkffWptl-DL5p6h-_Ozu8XP8ur64nJxelU6TtVY0lop3jQUgwTBSFsJ7gTGDedWSSaxdqoCVmvBgDjXVEqTljgsdENqxRxmM3S8rvsUh18TpNH0Pq06sAGGKRkpNROa8gwP_4GPwxRD7s1QShlXmKmMjtZoaTswPrTDGK1bVTSnRDOqNWMiq_l_VD4N9N4NAVqf37cSfmwlZDPCy7i0U0rm8vZm235fWxeHlCK05inmb42_DcFmtUmz2WSW3zYTTXUPzV-3WV0GX9cg2HGK8Ae8F3gDm5Kdrw</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Müllner, Ernst W</creator><creator>Dolznig, Helmut</creator><creator>Grebien, Florian</creator><creator>Sauer, Thomas</creator><creator>Beug, Hartmut</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Evidence for a size-sensing mechanism in animal cells</title><author>Müllner, Ernst W ; Dolznig, Helmut ; Grebien, Florian ; Sauer, Thomas ; Beug, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-2b774dd20e6e531f954c500d44a763608c79e3b853e1ccd9781f1c058d1b73c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Breast cancer</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Cell growth</topic><topic>Cell Physiological Phenomena</topic><topic>Cell proliferation</topic><topic>Cell Size</topic><topic>Chickens</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Erythroblasts - cytology</topic><topic>Erythrocytes</topic><topic>Experiments</topic><topic>Fibroblasts</topic><topic>G1 Phase - physiology</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Insulin-like growth factors</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>S Phase - physiology</topic><topic>Stem cells</topic><topic>Time Factors</topic><topic>Vertebrates</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müllner, Ernst W</creatorcontrib><creatorcontrib>Dolznig, Helmut</creatorcontrib><creatorcontrib>Grebien, Florian</creatorcontrib><creatorcontrib>Sauer, Thomas</creatorcontrib><creatorcontrib>Beug, Hartmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müllner, Ernst W</au><au>Dolznig, Helmut</au><au>Grebien, Florian</au><au>Sauer, Thomas</au><au>Beug, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for a size-sensing mechanism in animal cells</atitle><jtitle>Nature cell biology</jtitle><addtitle>Nat Cell Biol</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>6</volume><issue>9</issue><spage>899</spage><epage>905</epage><pages>899-905</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Continuously proliferating cells exactly double their mass during each cell cycle. Here we have addressed the controversial question of if and how cell size is sensed and regulated. We used erythroblasts that proliferate under the control of a constitutively active oncogene (v-ErbB) or under the control of physiological cytokines (stem cell factor, erythropoietin and v-ErbB inhibitor). The oncogene-driven cells proliferated 1.7 times faster and showed a 1.5-fold increase in cell volume. The two phenotypes could be converted into each other 24 h after altering growth factor signalling. The large cells had a higher rate of protein synthesis, together with a shortened G1 phase. Additional experiments with chicken erythroblasts and mouse fibroblasts, synchronized by centrifugal elutriation, provided further evidence that vertebrate cells can respond to cell size alterations (induced either through different growth factor signalling or DNA synthesis inhibitors) by compensatory shortening of the subsequent G1 phase. Taken together, these data suggest that an active size threshold mechanism exists in G1, which induces adjustment of cell-cycle length in the next cycle, thus ensuring maintenance of a proper balance between growth and proliferation rates in vertebrates.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>15322555</pmid><doi>10.1038/ncb1166</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2004-09, Vol.6 (9), p.899-905
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_66835824
source MEDLINE; Nature Journals; Alma/SFX Local Collection
subjects Animals
Breast cancer
Cell cycle
Cell Division
Cell growth
Cell Physiological Phenomena
Cell proliferation
Cell Size
Chickens
Deoxyribonucleic acid
DNA
Erythroblasts - cytology
Erythrocytes
Experiments
Fibroblasts
G1 Phase - physiology
Genetic aspects
Humans
Insulin-like growth factors
Kinetics
Mice
Models, Biological
Physiological aspects
Physiology
Protein Biosynthesis
Protein synthesis
S Phase - physiology
Stem cells
Time Factors
Vertebrates
Yeast
title Evidence for a size-sensing mechanism in animal cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20a%20size-sensing%20mechanism%20in%20animal%20cells&rft.jtitle=Nature%20cell%20biology&rft.au=M%C3%BCllner,%20Ernst%20W&rft.date=2004-09-01&rft.volume=6&rft.issue=9&rft.spage=899&rft.epage=905&rft.pages=899-905&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1166&rft_dat=%3Cgale_proqu%3EA183288335%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222347037&rft_id=info:pmid/15322555&rft_galeid=A183288335&rfr_iscdi=true