Evolution of Titan and implications for its hydrocarbon cycle
Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolut...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 2009-02, Vol.367 (1889), p.617-631 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 631 |
---|---|
container_issue | 1889 |
container_start_page | 617 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences |
container_volume | 367 |
creator | Tobie, G Choukroun, M Grasset, O Le Mouélic, S Lunine, J.I Sotin, C Bourgeois, O Gautier, D Hirtzig, M Lebonnois, S Le Corre, L |
description | Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere. |
doi_str_mv | 10.1098/rsta.2008.0246 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66832876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40485465</jstor_id><sourcerecordid>40485465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</originalsourceid><addsrcrecordid>eNp9kcuP0zAYxCMEYpeFKzdQTkgcUvy2c0CrpSwUVMRlQdws1w_qksbFdhby3-MoVdEe4OTH_Gb8aVxVTyFYQNCKVzFltUAAiAVAhN2rziHhsEEtQ_fLHjPSUIC_nVWPUtoBACGj6GF1BlvAMaHivHp9fRu6IfvQ18HVNz6rvla9qf3-0HmtJiHVLsTa51RvRxODVnFTaD3qzj6uHjjVJfvkuF5UX95d3yxXzfrz-w_Lq3WjiIC5UVxjbpXGxjgECGMtc7RFhDsC241yzCDKDESGGIWAwwKaDSeaEicobLnAF9XLOXerOnmIfq_iKIPycnW1ltMdwAJARtgtLOyLmT3E8HOwKcu9T9p2neptGJJkTGAkOCvgYgZ1DClF607JEMipXDmVK6dy5VRuMTw_Jg-bvTV_8WObBcAzEMNY6gja2zzKXRhiX47_jn02u3Yph3hKJYAIShgtejPrPmX7-6Sr-EMyjjmVXwWR67cfl5_W5I1cFR4cy_Lft798tPLOOOVwKO9jxiUUopUM8mK5_K9lGliHPts-3zFKN3TlQ4zDfwDlRcar</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66832876</pqid></control><display><type>article</type><title>Evolution of Titan and implications for its hydrocarbon cycle</title><source>JSTOR Mathematics & Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</creator><creatorcontrib>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</creatorcontrib><description>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2008.0246</identifier><identifier>PMID: 19073458</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Ammonia ; Astrophysics ; Atmosphere ; Atmospheric methane ; Clathrates ; Hydrates ; Hydrocarbons ; Ice ; Liquids ; Methane ; Oceans ; Outgassing ; Physics ; Review ; Thermal Evolution ; Titan</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 2009-02, Vol.367 (1889), p.617-631</ispartof><rights>Copyright 2008 & 2009 The Royal Society</rights><rights>2008 The Royal Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</citedby><cites>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</cites><orcidid>0000-0001-5260-1367 ; 0000-0003-3947-1072 ; 0000-0002-4494-0294 ; 0009-0001-9233-1231 ; 0000-0003-2279-4131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40485465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40485465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,885,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19073458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03801646$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobie, G</creatorcontrib><creatorcontrib>Choukroun, M</creatorcontrib><creatorcontrib>Grasset, O</creatorcontrib><creatorcontrib>Le Mouélic, S</creatorcontrib><creatorcontrib>Lunine, J.I</creatorcontrib><creatorcontrib>Sotin, C</creatorcontrib><creatorcontrib>Bourgeois, O</creatorcontrib><creatorcontrib>Gautier, D</creatorcontrib><creatorcontrib>Hirtzig, M</creatorcontrib><creatorcontrib>Lebonnois, S</creatorcontrib><creatorcontrib>Le Corre, L</creatorcontrib><title>Evolution of Titan and implications for its hydrocarbon cycle</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</description><subject>Ammonia</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric methane</subject><subject>Clathrates</subject><subject>Hydrates</subject><subject>Hydrocarbons</subject><subject>Ice</subject><subject>Liquids</subject><subject>Methane</subject><subject>Oceans</subject><subject>Outgassing</subject><subject>Physics</subject><subject>Review</subject><subject>Thermal Evolution</subject><subject>Titan</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcuP0zAYxCMEYpeFKzdQTkgcUvy2c0CrpSwUVMRlQdws1w_qksbFdhby3-MoVdEe4OTH_Gb8aVxVTyFYQNCKVzFltUAAiAVAhN2rziHhsEEtQ_fLHjPSUIC_nVWPUtoBACGj6GF1BlvAMaHivHp9fRu6IfvQ18HVNz6rvla9qf3-0HmtJiHVLsTa51RvRxODVnFTaD3qzj6uHjjVJfvkuF5UX95d3yxXzfrz-w_Lq3WjiIC5UVxjbpXGxjgECGMtc7RFhDsC241yzCDKDESGGIWAwwKaDSeaEicobLnAF9XLOXerOnmIfq_iKIPycnW1ltMdwAJARtgtLOyLmT3E8HOwKcu9T9p2neptGJJkTGAkOCvgYgZ1DClF607JEMipXDmVK6dy5VRuMTw_Jg-bvTV_8WObBcAzEMNY6gja2zzKXRhiX47_jn02u3Yph3hKJYAIShgtejPrPmX7-6Sr-EMyjjmVXwWR67cfl5_W5I1cFR4cy_Lft798tPLOOOVwKO9jxiUUopUM8mK5_K9lGliHPts-3zFKN3TlQ4zDfwDlRcar</recordid><startdate>20090228</startdate><enddate>20090228</enddate><creator>Tobie, G</creator><creator>Choukroun, M</creator><creator>Grasset, O</creator><creator>Le Mouélic, S</creator><creator>Lunine, J.I</creator><creator>Sotin, C</creator><creator>Bourgeois, O</creator><creator>Gautier, D</creator><creator>Hirtzig, M</creator><creator>Lebonnois, S</creator><creator>Le Corre, L</creator><general>The Royal Society</general><general>Royal Society, The</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0003-3947-1072</orcidid><orcidid>https://orcid.org/0000-0002-4494-0294</orcidid><orcidid>https://orcid.org/0009-0001-9233-1231</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid></search><sort><creationdate>20090228</creationdate><title>Evolution of Titan and implications for its hydrocarbon cycle</title><author>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ammonia</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric methane</topic><topic>Clathrates</topic><topic>Hydrates</topic><topic>Hydrocarbons</topic><topic>Ice</topic><topic>Liquids</topic><topic>Methane</topic><topic>Oceans</topic><topic>Outgassing</topic><topic>Physics</topic><topic>Review</topic><topic>Thermal Evolution</topic><topic>Titan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobie, G</creatorcontrib><creatorcontrib>Choukroun, M</creatorcontrib><creatorcontrib>Grasset, O</creatorcontrib><creatorcontrib>Le Mouélic, S</creatorcontrib><creatorcontrib>Lunine, J.I</creatorcontrib><creatorcontrib>Sotin, C</creatorcontrib><creatorcontrib>Bourgeois, O</creatorcontrib><creatorcontrib>Gautier, D</creatorcontrib><creatorcontrib>Hirtzig, M</creatorcontrib><creatorcontrib>Lebonnois, S</creatorcontrib><creatorcontrib>Le Corre, L</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobie, G</au><au>Choukroun, M</au><au>Grasset, O</au><au>Le Mouélic, S</au><au>Lunine, J.I</au><au>Sotin, C</au><au>Bourgeois, O</au><au>Gautier, D</au><au>Hirtzig, M</au><au>Lebonnois, S</au><au>Le Corre, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Titan and implications for its hydrocarbon cycle</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2009-02-28</date><risdate>2009</risdate><volume>367</volume><issue>1889</issue><spage>617</spage><epage>631</epage><pages>617-631</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><abstract>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>19073458</pmid><doi>10.1098/rsta.2008.0246</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0003-3947-1072</orcidid><orcidid>https://orcid.org/0000-0002-4494-0294</orcidid><orcidid>https://orcid.org/0009-0001-9233-1231</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 2009-02, Vol.367 (1889), p.617-631 |
issn | 1364-503X 0080-4614 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_66832876 |
source | JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ammonia Astrophysics Atmosphere Atmospheric methane Clathrates Hydrates Hydrocarbons Ice Liquids Methane Oceans Outgassing Physics Review Thermal Evolution Titan |
title | Evolution of Titan and implications for its hydrocarbon cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Titan%20and%20implications%20for%20its%20hydrocarbon%20cycle&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Tobie,%20G&rft.date=2009-02-28&rft.volume=367&rft.issue=1889&rft.spage=617&rft.epage=631&rft.pages=617-631&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2008.0246&rft_dat=%3Cjstor_proqu%3E40485465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66832876&rft_id=info:pmid/19073458&rft_jstor_id=40485465&rfr_iscdi=true |