Evolution of Titan and implications for its hydrocarbon cycle

Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences 2009-02, Vol.367 (1889), p.617-631
Hauptverfasser: Tobie, G, Choukroun, M, Grasset, O, Le Mouélic, S, Lunine, J.I, Sotin, C, Bourgeois, O, Gautier, D, Hirtzig, M, Lebonnois, S, Le Corre, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 1889
container_start_page 617
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences
container_volume 367
creator Tobie, G
Choukroun, M
Grasset, O
Le Mouélic, S
Lunine, J.I
Sotin, C
Bourgeois, O
Gautier, D
Hirtzig, M
Lebonnois, S
Le Corre, L
description Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.
doi_str_mv 10.1098/rsta.2008.0246
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66832876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40485465</jstor_id><sourcerecordid>40485465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</originalsourceid><addsrcrecordid>eNp9kcuP0zAYxCMEYpeFKzdQTkgcUvy2c0CrpSwUVMRlQdws1w_qksbFdhby3-MoVdEe4OTH_Gb8aVxVTyFYQNCKVzFltUAAiAVAhN2rziHhsEEtQ_fLHjPSUIC_nVWPUtoBACGj6GF1BlvAMaHivHp9fRu6IfvQ18HVNz6rvla9qf3-0HmtJiHVLsTa51RvRxODVnFTaD3qzj6uHjjVJfvkuF5UX95d3yxXzfrz-w_Lq3WjiIC5UVxjbpXGxjgECGMtc7RFhDsC241yzCDKDESGGIWAwwKaDSeaEicobLnAF9XLOXerOnmIfq_iKIPycnW1ltMdwAJARtgtLOyLmT3E8HOwKcu9T9p2neptGJJkTGAkOCvgYgZ1DClF607JEMipXDmVK6dy5VRuMTw_Jg-bvTV_8WObBcAzEMNY6gja2zzKXRhiX47_jn02u3Yph3hKJYAIShgtejPrPmX7-6Sr-EMyjjmVXwWR67cfl5_W5I1cFR4cy_Lft798tPLOOOVwKO9jxiUUopUM8mK5_K9lGliHPts-3zFKN3TlQ4zDfwDlRcar</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66832876</pqid></control><display><type>article</type><title>Evolution of Titan and implications for its hydrocarbon cycle</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</creator><creatorcontrib>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</creatorcontrib><description>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</description><identifier>ISSN: 1364-503X</identifier><identifier>ISSN: 0080-4614</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2008.0246</identifier><identifier>PMID: 19073458</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Ammonia ; Astrophysics ; Atmosphere ; Atmospheric methane ; Clathrates ; Hydrates ; Hydrocarbons ; Ice ; Liquids ; Methane ; Oceans ; Outgassing ; Physics ; Review ; Thermal Evolution ; Titan</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 2009-02, Vol.367 (1889), p.617-631</ispartof><rights>Copyright 2008 &amp; 2009 The Royal Society</rights><rights>2008 The Royal Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</citedby><cites>FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</cites><orcidid>0000-0001-5260-1367 ; 0000-0003-3947-1072 ; 0000-0002-4494-0294 ; 0009-0001-9233-1231 ; 0000-0003-2279-4131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40485465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40485465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,832,885,27924,27925,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19073458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03801646$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobie, G</creatorcontrib><creatorcontrib>Choukroun, M</creatorcontrib><creatorcontrib>Grasset, O</creatorcontrib><creatorcontrib>Le Mouélic, S</creatorcontrib><creatorcontrib>Lunine, J.I</creatorcontrib><creatorcontrib>Sotin, C</creatorcontrib><creatorcontrib>Bourgeois, O</creatorcontrib><creatorcontrib>Gautier, D</creatorcontrib><creatorcontrib>Hirtzig, M</creatorcontrib><creatorcontrib>Lebonnois, S</creatorcontrib><creatorcontrib>Le Corre, L</creatorcontrib><title>Evolution of Titan and implications for its hydrocarbon cycle</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</description><subject>Ammonia</subject><subject>Astrophysics</subject><subject>Atmosphere</subject><subject>Atmospheric methane</subject><subject>Clathrates</subject><subject>Hydrates</subject><subject>Hydrocarbons</subject><subject>Ice</subject><subject>Liquids</subject><subject>Methane</subject><subject>Oceans</subject><subject>Outgassing</subject><subject>Physics</subject><subject>Review</subject><subject>Thermal Evolution</subject><subject>Titan</subject><issn>1364-503X</issn><issn>0080-4614</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kcuP0zAYxCMEYpeFKzdQTkgcUvy2c0CrpSwUVMRlQdws1w_qksbFdhby3-MoVdEe4OTH_Gb8aVxVTyFYQNCKVzFltUAAiAVAhN2rziHhsEEtQ_fLHjPSUIC_nVWPUtoBACGj6GF1BlvAMaHivHp9fRu6IfvQ18HVNz6rvla9qf3-0HmtJiHVLsTa51RvRxODVnFTaD3qzj6uHjjVJfvkuF5UX95d3yxXzfrz-w_Lq3WjiIC5UVxjbpXGxjgECGMtc7RFhDsC241yzCDKDESGGIWAwwKaDSeaEicobLnAF9XLOXerOnmIfq_iKIPycnW1ltMdwAJARtgtLOyLmT3E8HOwKcu9T9p2neptGJJkTGAkOCvgYgZ1DClF607JEMipXDmVK6dy5VRuMTw_Jg-bvTV_8WObBcAzEMNY6gja2zzKXRhiX47_jn02u3Yph3hKJYAIShgtejPrPmX7-6Sr-EMyjjmVXwWR67cfl5_W5I1cFR4cy_Lft798tPLOOOVwKO9jxiUUopUM8mK5_K9lGliHPts-3zFKN3TlQ4zDfwDlRcar</recordid><startdate>20090228</startdate><enddate>20090228</enddate><creator>Tobie, G</creator><creator>Choukroun, M</creator><creator>Grasset, O</creator><creator>Le Mouélic, S</creator><creator>Lunine, J.I</creator><creator>Sotin, C</creator><creator>Bourgeois, O</creator><creator>Gautier, D</creator><creator>Hirtzig, M</creator><creator>Lebonnois, S</creator><creator>Le Corre, L</creator><general>The Royal Society</general><general>Royal Society, The</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0003-3947-1072</orcidid><orcidid>https://orcid.org/0000-0002-4494-0294</orcidid><orcidid>https://orcid.org/0009-0001-9233-1231</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid></search><sort><creationdate>20090228</creationdate><title>Evolution of Titan and implications for its hydrocarbon cycle</title><author>Tobie, G ; Choukroun, M ; Grasset, O ; Le Mouélic, S ; Lunine, J.I ; Sotin, C ; Bourgeois, O ; Gautier, D ; Hirtzig, M ; Lebonnois, S ; Le Corre, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-a7c37eac3ddf2046696f59247f419baf6d256d12d4da20f381db74c54f8519783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ammonia</topic><topic>Astrophysics</topic><topic>Atmosphere</topic><topic>Atmospheric methane</topic><topic>Clathrates</topic><topic>Hydrates</topic><topic>Hydrocarbons</topic><topic>Ice</topic><topic>Liquids</topic><topic>Methane</topic><topic>Oceans</topic><topic>Outgassing</topic><topic>Physics</topic><topic>Review</topic><topic>Thermal Evolution</topic><topic>Titan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobie, G</creatorcontrib><creatorcontrib>Choukroun, M</creatorcontrib><creatorcontrib>Grasset, O</creatorcontrib><creatorcontrib>Le Mouélic, S</creatorcontrib><creatorcontrib>Lunine, J.I</creatorcontrib><creatorcontrib>Sotin, C</creatorcontrib><creatorcontrib>Bourgeois, O</creatorcontrib><creatorcontrib>Gautier, D</creatorcontrib><creatorcontrib>Hirtzig, M</creatorcontrib><creatorcontrib>Lebonnois, S</creatorcontrib><creatorcontrib>Le Corre, L</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobie, G</au><au>Choukroun, M</au><au>Grasset, O</au><au>Le Mouélic, S</au><au>Lunine, J.I</au><au>Sotin, C</au><au>Bourgeois, O</au><au>Gautier, D</au><au>Hirtzig, M</au><au>Lebonnois, S</au><au>Le Corre, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Titan and implications for its hydrocarbon cycle</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2009-02-28</date><risdate>2009</risdate><volume>367</volume><issue>1889</issue><spage>617</spage><epage>631</epage><pages>617-631</pages><issn>1364-503X</issn><issn>0080-4614</issn><eissn>1471-2962</eissn><abstract>Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>19073458</pmid><doi>10.1098/rsta.2008.0246</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0003-3947-1072</orcidid><orcidid>https://orcid.org/0000-0002-4494-0294</orcidid><orcidid>https://orcid.org/0009-0001-9233-1231</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences, 2009-02, Vol.367 (1889), p.617-631
issn 1364-503X
0080-4614
1471-2962
language eng
recordid cdi_proquest_miscellaneous_66832876
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ammonia
Astrophysics
Atmosphere
Atmospheric methane
Clathrates
Hydrates
Hydrocarbons
Ice
Liquids
Methane
Oceans
Outgassing
Physics
Review
Thermal Evolution
Titan
title Evolution of Titan and implications for its hydrocarbon cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Titan%20and%20implications%20for%20its%20hydrocarbon%20cycle&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical%20and%20physical%20sciences&rft.au=Tobie,%20G&rft.date=2009-02-28&rft.volume=367&rft.issue=1889&rft.spage=617&rft.epage=631&rft.pages=617-631&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2008.0246&rft_dat=%3Cjstor_proqu%3E40485465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66832876&rft_id=info:pmid/19073458&rft_jstor_id=40485465&rfr_iscdi=true