Maximum entropy decomposition of flux distribution at steady state to elementary modes

Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2009, Vol.107 (1), p.84-89
Hauptverfasser: Zhao, Quanyu, Kurata, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 84
container_title Journal of bioscience and bioengineering
container_volume 107
creator Zhao, Quanyu
Kurata, Hiroyuki
description Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli, and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux distribution in various mutants.
doi_str_mv 10.1016/j.jbiosc.2008.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66822630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389172308000637</els_id><sourcerecordid>66822630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-19fac212e35ff24852c2c7febeb115b4bb90ab2e15452ddb770adf0303d01d803</originalsourceid><addsrcrecordid>eNqFkUuPFSEQRjtG44yj_0ANm3HXPRTQr42JmYyvzEQX6pbwKAw33c0VaDP338u1b3SnqyLUqQ84VNVzoA1Q6K52zU77kEzDKB0aOjYU4EF1Dlz0tRAMHh7Xw1hDz_hZ9SSlHaXQ0x4eV2cwgugBuvPq25269_M6E1xyDPsDsWjCvA_JZx8WEhxx03pPrE85er3-3lSZpIzKHkpRGUkOBCecS4KKBzIHi-lp9cipKeGzU72ovr69-XL9vr799O7D9Zvb2rRc5BpGpwwDhrx1jomhZYaZ3qFGDdBqofVIlWYIrWiZtbrvqbKOcsotBTtQflG92nL3MfxYMWU5-2RwmtSCYU2y6wbGOv5_kNHiivGxgGIDTQwpRXRyH_1cHiaByqN4uZObeHkUL-koi_gy9vKUv-oZ7d-hk-kCXJ4AlYyaXFSL8ekPxwDE0PVD4V5snFNBqu-xMB8_l5PG8nvAeOm_3vpYtP70GGUyHheD1kc0Wdrg_33TX2RirOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20389239</pqid></control><display><type>article</type><title>Maximum entropy decomposition of flux distribution at steady state to elementary modes</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Quanyu ; Kurata, Hiroyuki</creator><creatorcontrib>Zhao, Quanyu ; Kurata, Hiroyuki</creatorcontrib><description>Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli, and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux distribution in various mutants.</description><identifier>ISSN: 1389-1723</identifier><identifier>EISSN: 1347-4421</identifier><identifier>DOI: 10.1016/j.jbiosc.2008.09.011</identifier><identifier>PMID: 19147116</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Bacillus subtilis - genetics ; Biological and medical sciences ; Biotechnology ; CELLS ; CELLULE ; CELULAS ; CHO Cells ; Cricetinae ; Cricetulus ; Elementary mode ; Entropy ; ENZIMAS ; ENZYME ; Enzyme control flux ; ENZYMES ; Enzymes - chemistry ; ESCHERICHIA COLI ; Escherichia coli - genetics ; EXPRESION GENICA ; EXPRESSION DES GENES ; Fundamental and applied biological sciences. Psychology ; GENE EXPRESSION ; HAMSTER ; HAMSTERS ; Linear programming ; Maximum entropy principle ; Metabolic flux analysis ; METABOLISM ; METABOLISME ; METABOLISMO ; Models, Biological ; Models, Statistical ; Models, Theoretical ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; NETWORKS ; Quadratic programming ; REDES ; Reproducibility of Results ; RESEAU ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics</subject><ispartof>Journal of bioscience and bioengineering, 2009, Vol.107 (1), p.84-89</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-19fac212e35ff24852c2c7febeb115b4bb90ab2e15452ddb770adf0303d01d803</citedby><cites>FETCH-LOGICAL-c534t-19fac212e35ff24852c2c7febeb115b4bb90ab2e15452ddb770adf0303d01d803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiosc.2008.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4025,27927,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21148678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19147116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Quanyu</creatorcontrib><creatorcontrib>Kurata, Hiroyuki</creatorcontrib><title>Maximum entropy decomposition of flux distribution at steady state to elementary modes</title><title>Journal of bioscience and bioengineering</title><addtitle>J Biosci Bioeng</addtitle><description>Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli, and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux distribution in various mutants.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bacillus subtilis - genetics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>CELLS</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Elementary mode</subject><subject>Entropy</subject><subject>ENZIMAS</subject><subject>ENZYME</subject><subject>Enzyme control flux</subject><subject>ENZYMES</subject><subject>Enzymes - chemistry</subject><subject>ESCHERICHIA COLI</subject><subject>Escherichia coli - genetics</subject><subject>EXPRESION GENICA</subject><subject>EXPRESSION DES GENES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE EXPRESSION</subject><subject>HAMSTER</subject><subject>HAMSTERS</subject><subject>Linear programming</subject><subject>Maximum entropy principle</subject><subject>Metabolic flux analysis</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>NETWORKS</subject><subject>Quadratic programming</subject><subject>REDES</subject><subject>Reproducibility of Results</subject><subject>RESEAU</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><issn>1389-1723</issn><issn>1347-4421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuPFSEQRjtG44yj_0ANm3HXPRTQr42JmYyvzEQX6pbwKAw33c0VaDP338u1b3SnqyLUqQ84VNVzoA1Q6K52zU77kEzDKB0aOjYU4EF1Dlz0tRAMHh7Xw1hDz_hZ9SSlHaXQ0x4eV2cwgugBuvPq25269_M6E1xyDPsDsWjCvA_JZx8WEhxx03pPrE85er3-3lSZpIzKHkpRGUkOBCecS4KKBzIHi-lp9cipKeGzU72ovr69-XL9vr799O7D9Zvb2rRc5BpGpwwDhrx1jomhZYaZ3qFGDdBqofVIlWYIrWiZtbrvqbKOcsotBTtQflG92nL3MfxYMWU5-2RwmtSCYU2y6wbGOv5_kNHiivGxgGIDTQwpRXRyH_1cHiaByqN4uZObeHkUL-koi_gy9vKUv-oZ7d-hk-kCXJ4AlYyaXFSL8ekPxwDE0PVD4V5snFNBqu-xMB8_l5PG8nvAeOm_3vpYtP70GGUyHheD1kc0Wdrg_33TX2RirOc</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Zhao, Quanyu</creator><creator>Kurata, Hiroyuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Maximum entropy decomposition of flux distribution at steady state to elementary modes</title><author>Zhao, Quanyu ; Kurata, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-19fac212e35ff24852c2c7febeb115b4bb90ab2e15452ddb770adf0303d01d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bacillus subtilis - genetics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>CELLS</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Elementary mode</topic><topic>Entropy</topic><topic>ENZIMAS</topic><topic>ENZYME</topic><topic>Enzyme control flux</topic><topic>ENZYMES</topic><topic>Enzymes - chemistry</topic><topic>ESCHERICHIA COLI</topic><topic>Escherichia coli - genetics</topic><topic>EXPRESION GENICA</topic><topic>EXPRESSION DES GENES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE EXPRESSION</topic><topic>HAMSTER</topic><topic>HAMSTERS</topic><topic>Linear programming</topic><topic>Maximum entropy principle</topic><topic>Metabolic flux analysis</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>NETWORKS</topic><topic>Quadratic programming</topic><topic>REDES</topic><topic>Reproducibility of Results</topic><topic>RESEAU</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Quanyu</creatorcontrib><creatorcontrib>Kurata, Hiroyuki</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioscience and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Quanyu</au><au>Kurata, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum entropy decomposition of flux distribution at steady state to elementary modes</atitle><jtitle>Journal of bioscience and bioengineering</jtitle><addtitle>J Biosci Bioeng</addtitle><date>2009</date><risdate>2009</risdate><volume>107</volume><issue>1</issue><spage>84</spage><epage>89</epage><pages>84-89</pages><issn>1389-1723</issn><eissn>1347-4421</eissn><abstract>Enzyme Control Flux (ECF) is a method of correlating enzyme activity and flux distribution. The advantage of ECF is that the measurement integrates proteome data with metabolic flux analysis through Elementary Modes (EMs). But there are a few methods of effectively determining the Elementary Mode Coefficient (EMC) in cases where no objective biological function is available. Therefore, we proposed a new algorithm implementing the maximum entropy principle (MEP) as an objective function for estimating the EMC. To demonstrate the feasibility of using the MEP in this way, we compared it with Linear Programming and Quadratic Programming for modeling the metabolic networks of Chinese Hamster Ovary, Escherichia coli, and Saccharomyces cerevisiae cells. The use of the MEP presents the most plausible distribution of EMCs in the absence of any biological hypotheses describing the physiological state of cells, thereby enhancing the prediction accuracy of the flux distribution in various mutants.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>19147116</pmid><doi>10.1016/j.jbiosc.2008.09.011</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-1723
ispartof Journal of bioscience and bioengineering, 2009, Vol.107 (1), p.84-89
issn 1389-1723
1347-4421
language eng
recordid cdi_proquest_miscellaneous_66822630
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Animals
Bacillus subtilis - genetics
Biological and medical sciences
Biotechnology
CELLS
CELLULE
CELULAS
CHO Cells
Cricetinae
Cricetulus
Elementary mode
Entropy
ENZIMAS
ENZYME
Enzyme control flux
ENZYMES
Enzymes - chemistry
ESCHERICHIA COLI
Escherichia coli - genetics
EXPRESION GENICA
EXPRESSION DES GENES
Fundamental and applied biological sciences. Psychology
GENE EXPRESSION
HAMSTER
HAMSTERS
Linear programming
Maximum entropy principle
Metabolic flux analysis
METABOLISM
METABOLISME
METABOLISMO
Models, Biological
Models, Statistical
Models, Theoretical
MUTANT
MUTANTES
MUTANTS
Mutation
NETWORKS
Quadratic programming
REDES
Reproducibility of Results
RESEAU
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
title Maximum entropy decomposition of flux distribution at steady state to elementary modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20entropy%20decomposition%20of%20flux%20distribution%20at%20steady%20state%20to%20elementary%20modes&rft.jtitle=Journal%20of%20bioscience%20and%20bioengineering&rft.au=Zhao,%20Quanyu&rft.date=2009&rft.volume=107&rft.issue=1&rft.spage=84&rft.epage=89&rft.pages=84-89&rft.issn=1389-1723&rft.eissn=1347-4421&rft_id=info:doi/10.1016/j.jbiosc.2008.09.011&rft_dat=%3Cproquest_cross%3E66822630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20389239&rft_id=info:pmid/19147116&rft_els_id=S1389172308000637&rfr_iscdi=true