Raman spectroscopic studies of hydrogen clathrate hydrates

Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran + hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H 2 molecules. The complex vibron region of the Raman spectrum has been interpreted b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2009-01, Vol.130 (1), p.014506-014506-10
Hauptverfasser: Strobel, Timothy A., Sloan, E. Dendy, Koh, Carolyn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014506-10
container_issue 1
container_start_page 014506
container_title The Journal of chemical physics
container_volume 130
creator Strobel, Timothy A.
Sloan, E. Dendy
Koh, Carolyn A.
description Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran + hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H 2 molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H 2 content as a function of pressure, and with D 2 isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H 2 vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H 2 within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para- H 2 occurs over a relatively slow time period (days). The rotational degeneracy of H 2 molecules within the clathrate cavities is lifted, observed directly in splitting of the para- H 2 roton band. Raman spectra from H 2 and D 2 hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D 2 is a suitable substitute for H 2 . The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.
doi_str_mv 10.1063/1.3046678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66817029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66817029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ea69b268d90ac50dcdb16f3fa43c00800f60447d9483b36708be4c97f68cd2e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMozji68A9IV4KLjjdNvEkEFzL4ggFBZh_SJHUqfdmki_n3VqcgLlx9cDkcuIeQcwpLCsiu6ZIBRxTygMwpSJUKVHBI5gAZTRUCzshJCB8AQEXGj8mMKsoBMzont2-mNk0SOm9j3wbbdqVNQhxc6UPSFsl25_r23TeJrUzc9ib6n9O44ZQcFaYK_mzaBdk8PmxWz-n69elldb9OLWcypt6gyjOUToGxN-CsyykWrDCcWQAJUCBwLpzikuUMBcjcc6tEgdK6zLMFudxru779HHyIui6D9VVlGt8OQSNKKiBTI3i1B-34SOh9obu-rE2_0xT0dydN9dRpZC8m6ZDX3v2SU5gRuNsDwZbRxLJt_rf9JNR_ErIvXOR3WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66817029</pqid></control><display><type>article</type><title>Raman spectroscopic studies of hydrogen clathrate hydrates</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Strobel, Timothy A. ; Sloan, E. Dendy ; Koh, Carolyn A.</creator><creatorcontrib>Strobel, Timothy A. ; Sloan, E. Dendy ; Koh, Carolyn A.</creatorcontrib><description>Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran + hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H 2 molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H 2 content as a function of pressure, and with D 2 isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H 2 vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H 2 within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para- H 2 occurs over a relatively slow time period (days). The rotational degeneracy of H 2 molecules within the clathrate cavities is lifted, observed directly in splitting of the para- H 2 roton band. Raman spectra from H 2 and D 2 hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D 2 is a suitable substitute for H 2 . The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3046678</identifier><identifier>PMID: 19140621</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Deuterium ; Furans - chemistry ; Hydrogen - chemistry ; Macromolecular Substances ; Pressure ; Spectrum Analysis, Raman ; Temperature</subject><ispartof>The Journal of chemical physics, 2009-01, Vol.130 (1), p.014506-014506-10</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ea69b268d90ac50dcdb16f3fa43c00800f60447d9483b36708be4c97f68cd2e3</citedby><cites>FETCH-LOGICAL-c438t-ea69b268d90ac50dcdb16f3fa43c00800f60447d9483b36708be4c97f68cd2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19140621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strobel, Timothy A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><title>Raman spectroscopic studies of hydrogen clathrate hydrates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran + hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H 2 molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H 2 content as a function of pressure, and with D 2 isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H 2 vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H 2 within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para- H 2 occurs over a relatively slow time period (days). The rotational degeneracy of H 2 molecules within the clathrate cavities is lifted, observed directly in splitting of the para- H 2 roton band. Raman spectra from H 2 and D 2 hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D 2 is a suitable substitute for H 2 . The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.</description><subject>Deuterium</subject><subject>Furans - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Macromolecular Substances</subject><subject>Pressure</subject><subject>Spectrum Analysis, Raman</subject><subject>Temperature</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLxDAURoMozji68A9IV4KLjjdNvEkEFzL4ggFBZh_SJHUqfdmki_n3VqcgLlx9cDkcuIeQcwpLCsiu6ZIBRxTygMwpSJUKVHBI5gAZTRUCzshJCB8AQEXGj8mMKsoBMzont2-mNk0SOm9j3wbbdqVNQhxc6UPSFsl25_r23TeJrUzc9ib6n9O44ZQcFaYK_mzaBdk8PmxWz-n69elldb9OLWcypt6gyjOUToGxN-CsyykWrDCcWQAJUCBwLpzikuUMBcjcc6tEgdK6zLMFudxru779HHyIui6D9VVlGt8OQSNKKiBTI3i1B-34SOh9obu-rE2_0xT0dydN9dRpZC8m6ZDX3v2SU5gRuNsDwZbRxLJt_rf9JNR_ErIvXOR3WQ</recordid><startdate>20090107</startdate><enddate>20090107</enddate><creator>Strobel, Timothy A.</creator><creator>Sloan, E. Dendy</creator><creator>Koh, Carolyn A.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090107</creationdate><title>Raman spectroscopic studies of hydrogen clathrate hydrates</title><author>Strobel, Timothy A. ; Sloan, E. Dendy ; Koh, Carolyn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ea69b268d90ac50dcdb16f3fa43c00800f60447d9483b36708be4c97f68cd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Deuterium</topic><topic>Furans - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Macromolecular Substances</topic><topic>Pressure</topic><topic>Spectrum Analysis, Raman</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strobel, Timothy A.</creatorcontrib><creatorcontrib>Sloan, E. Dendy</creatorcontrib><creatorcontrib>Koh, Carolyn A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strobel, Timothy A.</au><au>Sloan, E. Dendy</au><au>Koh, Carolyn A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman spectroscopic studies of hydrogen clathrate hydrates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2009-01-07</date><risdate>2009</risdate><volume>130</volume><issue>1</issue><spage>014506</spage><epage>014506-10</epage><pages>014506-014506-10</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran + hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H 2 molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H 2 content as a function of pressure, and with D 2 isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H 2 vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H 2 within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para- H 2 occurs over a relatively slow time period (days). The rotational degeneracy of H 2 molecules within the clathrate cavities is lifted, observed directly in splitting of the para- H 2 roton band. Raman spectra from H 2 and D 2 hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D 2 is a suitable substitute for H 2 . The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19140621</pmid><doi>10.1063/1.3046678</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2009-01, Vol.130 (1), p.014506-014506-10
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_66817029
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Deuterium
Furans - chemistry
Hydrogen - chemistry
Macromolecular Substances
Pressure
Spectrum Analysis, Raman
Temperature
title Raman spectroscopic studies of hydrogen clathrate hydrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20spectroscopic%20studies%20of%20hydrogen%20clathrate%20hydrates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Strobel,%20Timothy%20A.&rft.date=2009-01-07&rft.volume=130&rft.issue=1&rft.spage=014506&rft.epage=014506-10&rft.pages=014506-014506-10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3046678&rft_dat=%3Cproquest_cross%3E66817029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66817029&rft_id=info:pmid/19140621&rfr_iscdi=true