Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?
Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavi...
Gespeichert in:
Veröffentlicht in: | Oecologia 2004-08, Vol.140 (4), p.577-585 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 4 |
container_start_page | 577 |
container_title | Oecologia |
container_volume | 140 |
creator | Rosenheim, Jay A Limburg, David D Colfer, Ramana G Fournier, Valerie Hsu, Cynthia L Leonardo, Teresa E Nelson, Erik H |
description | Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation. |
doi_str_mv | 10.1007/s00442-004-1620-5 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66790021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40005702</jstor_id><sourcerecordid>40005702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7ddec3c61d8b0b6c316fb872e2e222e139cbd6e82a8020183c766ff9d569797f3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtR3HH1ATyoQdDTtibp_PUisqgrLCjonkM6nZ7N0NPpTaUHxrfyDU3vDLvgRQKVUPWrj0p9VfWc4HcEY_keMGaM1iXWRFBc8wfVirCG1kQ3-mG1wpjqWnGmT6onABuMCSOcP65OCKdSMcpW1Z8Ln9qwi8mjKU7zYHOII4J5mpIHWN7tHtkRhTH7tPVdsLmQyXc2x3SGflzvcwQf5mEGtLUuxSkMAc5QgNICfoSQw86jHFG-vm0sOedR7I-iya7nMHR3kh-WvO12dsx2fcvB1g4DamO3RxB--49Pq0e9HcA_O96n1dWXz7_OL-rL71-_nX-6rB3TMtey67xrnCCdanErXENE3ypJfTmUetJo13bCK2oVppioxkkh-l53XGipZd-cVm8PulOKN7OHbLYBnB8GO_o4gxFC6rJg8l-QKMyxorKAr_8BN3FOY_mEURRzyTjWBSIHqOwSIPneTClsbdobgs3iujm4bko0i-uGl56XR-G5LR7ddxxtLsCbI2DB2aFPdnQB7jmBBZOKFu7FgdtA8eKuzjAu4-Gl_upQ7200dp2KxtXPsj1eFkHLVLL5C2VNyvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820574509</pqid></control><display><type>article</type><title>Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Rosenheim, Jay A ; Limburg, David D ; Colfer, Ramana G ; Fournier, Valerie ; Hsu, Cynthia L ; Leonardo, Teresa E ; Nelson, Erik H</creator><creatorcontrib>Rosenheim, Jay A ; Limburg, David D ; Colfer, Ramana G ; Fournier, Valerie ; Hsu, Cynthia L ; Leonardo, Teresa E ; Nelson, Erik H</creatorcontrib><description>Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-004-1620-5</identifier><identifier>PMID: 15278424</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Analysis of Variance ; Animal and plant ecology ; Animal behavior ; Animal, plant and microbial ecology ; Animals ; Araneae ; arthropod communities ; Biological and medical sciences ; Body Constitution ; Body size ; Carica ; Carica papaya ; Ecosystem ; Feeding Behavior - physiology ; field experimentation ; Field tests ; Food Chain ; Foraging ; Foraging behavior ; Fundamental and applied biological sciences. Psychology ; General aspects ; Hawaii ; Herbivores ; Larvae ; leaves ; Mites ; Mites - physiology ; Models, Biological ; Phytoseiulus ; Phytoseiulus macropilis ; Population Dynamics ; Population ecology ; Population growth ; Population growth rate ; Predation ; Predators ; Predatory Behavior - physiology ; predatory mites ; prediction ; Prey ; risk ; Spiders ; Spiders - physiology ; Stethorus ; Synecology ; Tetranychus cinnabarinus ; Trophic relationships ; webs</subject><ispartof>Oecologia, 2004-08, Vol.140 (4), p.577-585</ispartof><rights>Copyright 2004 Springer-Verlag</rights><rights>2004 INIST-CNRS</rights><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7ddec3c61d8b0b6c316fb872e2e222e139cbd6e82a8020183c766ff9d569797f3</citedby><cites>FETCH-LOGICAL-c497t-7ddec3c61d8b0b6c316fb872e2e222e139cbd6e82a8020183c766ff9d569797f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40005702$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40005702$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16064782$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15278424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenheim, Jay A</creatorcontrib><creatorcontrib>Limburg, David D</creatorcontrib><creatorcontrib>Colfer, Ramana G</creatorcontrib><creatorcontrib>Fournier, Valerie</creatorcontrib><creatorcontrib>Hsu, Cynthia L</creatorcontrib><creatorcontrib>Leonardo, Teresa E</creatorcontrib><creatorcontrib>Nelson, Erik H</creatorcontrib><title>Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?</title><title>Oecologia</title><addtitle>Oecologia</addtitle><description>Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.</description><subject>Analysis of Variance</subject><subject>Animal and plant ecology</subject><subject>Animal behavior</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Araneae</subject><subject>arthropod communities</subject><subject>Biological and medical sciences</subject><subject>Body Constitution</subject><subject>Body size</subject><subject>Carica</subject><subject>Carica papaya</subject><subject>Ecosystem</subject><subject>Feeding Behavior - physiology</subject><subject>field experimentation</subject><subject>Field tests</subject><subject>Food Chain</subject><subject>Foraging</subject><subject>Foraging behavior</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Hawaii</subject><subject>Herbivores</subject><subject>Larvae</subject><subject>leaves</subject><subject>Mites</subject><subject>Mites - physiology</subject><subject>Models, Biological</subject><subject>Phytoseiulus</subject><subject>Phytoseiulus macropilis</subject><subject>Population Dynamics</subject><subject>Population ecology</subject><subject>Population growth</subject><subject>Population growth rate</subject><subject>Predation</subject><subject>Predators</subject><subject>Predatory Behavior - physiology</subject><subject>predatory mites</subject><subject>prediction</subject><subject>Prey</subject><subject>risk</subject><subject>Spiders</subject><subject>Spiders - physiology</subject><subject>Stethorus</subject><subject>Synecology</subject><subject>Tetranychus cinnabarinus</subject><subject>Trophic relationships</subject><subject>webs</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc-KFDEQxhtR3HH1ATyoQdDTtibp_PUisqgrLCjonkM6nZ7N0NPpTaUHxrfyDU3vDLvgRQKVUPWrj0p9VfWc4HcEY_keMGaM1iXWRFBc8wfVirCG1kQ3-mG1wpjqWnGmT6onABuMCSOcP65OCKdSMcpW1Z8Ln9qwi8mjKU7zYHOII4J5mpIHWN7tHtkRhTH7tPVdsLmQyXc2x3SGflzvcwQf5mEGtLUuxSkMAc5QgNICfoSQw86jHFG-vm0sOedR7I-iya7nMHR3kh-WvO12dsx2fcvB1g4DamO3RxB--49Pq0e9HcA_O96n1dWXz7_OL-rL71-_nX-6rB3TMtey67xrnCCdanErXENE3ypJfTmUetJo13bCK2oVppioxkkh-l53XGipZd-cVm8PulOKN7OHbLYBnB8GO_o4gxFC6rJg8l-QKMyxorKAr_8BN3FOY_mEURRzyTjWBSIHqOwSIPneTClsbdobgs3iujm4bko0i-uGl56XR-G5LR7ddxxtLsCbI2DB2aFPdnQB7jmBBZOKFu7FgdtA8eKuzjAu4-Gl_upQ7200dp2KxtXPsj1eFkHLVLL5C2VNyvo</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Rosenheim, Jay A</creator><creator>Limburg, David D</creator><creator>Colfer, Ramana G</creator><creator>Fournier, Valerie</creator><creator>Hsu, Cynthia L</creator><creator>Leonardo, Teresa E</creator><creator>Nelson, Erik H</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?</title><author>Rosenheim, Jay A ; Limburg, David D ; Colfer, Ramana G ; Fournier, Valerie ; Hsu, Cynthia L ; Leonardo, Teresa E ; Nelson, Erik H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7ddec3c61d8b0b6c316fb872e2e222e139cbd6e82a8020183c766ff9d569797f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of Variance</topic><topic>Animal and plant ecology</topic><topic>Animal behavior</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Araneae</topic><topic>arthropod communities</topic><topic>Biological and medical sciences</topic><topic>Body Constitution</topic><topic>Body size</topic><topic>Carica</topic><topic>Carica papaya</topic><topic>Ecosystem</topic><topic>Feeding Behavior - physiology</topic><topic>field experimentation</topic><topic>Field tests</topic><topic>Food Chain</topic><topic>Foraging</topic><topic>Foraging behavior</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Hawaii</topic><topic>Herbivores</topic><topic>Larvae</topic><topic>leaves</topic><topic>Mites</topic><topic>Mites - physiology</topic><topic>Models, Biological</topic><topic>Phytoseiulus</topic><topic>Phytoseiulus macropilis</topic><topic>Population Dynamics</topic><topic>Population ecology</topic><topic>Population growth</topic><topic>Population growth rate</topic><topic>Predation</topic><topic>Predators</topic><topic>Predatory Behavior - physiology</topic><topic>predatory mites</topic><topic>prediction</topic><topic>Prey</topic><topic>risk</topic><topic>Spiders</topic><topic>Spiders - physiology</topic><topic>Stethorus</topic><topic>Synecology</topic><topic>Tetranychus cinnabarinus</topic><topic>Trophic relationships</topic><topic>webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenheim, Jay A</creatorcontrib><creatorcontrib>Limburg, David D</creatorcontrib><creatorcontrib>Colfer, Ramana G</creatorcontrib><creatorcontrib>Fournier, Valerie</creatorcontrib><creatorcontrib>Hsu, Cynthia L</creatorcontrib><creatorcontrib>Leonardo, Teresa E</creatorcontrib><creatorcontrib>Nelson, Erik H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenheim, Jay A</au><au>Limburg, David D</au><au>Colfer, Ramana G</au><au>Fournier, Valerie</au><au>Hsu, Cynthia L</au><au>Leonardo, Teresa E</au><au>Nelson, Erik H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?</atitle><jtitle>Oecologia</jtitle><addtitle>Oecologia</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>140</volume><issue>4</issue><spage>577</spage><epage>585</epage><pages>577-585</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Recent work in terrestrial communities has highlighted a new question: what makes a predator act as a consumer of herbivores versus acting as a consumer of other predators? Here we test three predictions from a model (Rosenheim and Corbett in Ecology 84:2538–2548) that links predator foraging behavior with predator ecology: (1) widely foraging predators have the potential to suppress populations of sedentary herbivores; (2) sit and wait predators are unlikely to suppress populations of sedentary herbivores; and (3) sit and wait predators may act as top predators, suppressing populations of widely foraging intermediate predators and thereby releasing sedentary herbivore populations from control. Manipulative field experiments conducted with the arthropod community found on papaya, Carica papaya, provided support for the first two predictions: (1) the widely foraging predatory mite Phytoseiulus macropilis strongly suppressed populations of a sedentary herbivore, the spider mite Tetranychus cinnabarinus, whereas (2) the tangle-web spider Nesticodes rufipes, a classic sit and wait predator, failed to suppress Tetranychus population growth rates. However, our experiments provided no support for the third hypothesis; the sit and wait predator Nesticodes did not disrupt the suppression of Tetranychus populations by Phytoseiulus. This contrasts with an earlier study that demonstrated that Nesticodes can disrupt control of Tetranychus generated by another widely foraging predator, Stethorus siphonulus. Behavioral observations suggested a simple explanation for the differing sensitivity of Phytoseiulus and Stethorus to Nesticodes predation. Phytoseiulus is a much smaller predator than Stethorus, has a lower rate of prey consumption, and thus has a much smaller requirement to forage across the leaf surface for prey, thereby reducing its probability of encountering Nesticodes webs. Small body size may be a general means by which widely foraging intermediate predators can ameliorate their risk of predation by sit and wait top predators. This effect may partially or fully offset the general expectation from size-structured trophic interactions that smaller predators are subject to more intense intraguild predation.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>15278424</pmid><doi>10.1007/s00442-004-1620-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2004-08, Vol.140 (4), p.577-585 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_66790021 |
source | Jstor Complete Legacy; MEDLINE; SpringerLink Journals |
subjects | Analysis of Variance Animal and plant ecology Animal behavior Animal, plant and microbial ecology Animals Araneae arthropod communities Biological and medical sciences Body Constitution Body size Carica Carica papaya Ecosystem Feeding Behavior - physiology field experimentation Field tests Food Chain Foraging Foraging behavior Fundamental and applied biological sciences. Psychology General aspects Hawaii Herbivores Larvae leaves Mites Mites - physiology Models, Biological Phytoseiulus Phytoseiulus macropilis Population Dynamics Population ecology Population growth Population growth rate Predation Predators Predatory Behavior - physiology predatory mites prediction Prey risk Spiders Spiders - physiology Stethorus Synecology Tetranychus cinnabarinus Trophic relationships webs |
title | Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Herbivore%20population%20suppression%20by%20an%20intermediate%20predator,%20Phytoseiulus%20macropilis,%20is%20insensitive%20to%20the%20presence%20of%20an%20intraguild%20predator:%20an%20advantage%20of%20small%20body%20size?&rft.jtitle=Oecologia&rft.au=Rosenheim,%20Jay%20A&rft.date=2004-08-01&rft.volume=140&rft.issue=4&rft.spage=577&rft.epage=585&rft.pages=577-585&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s00442-004-1620-5&rft_dat=%3Cjstor_proqu%3E40005702%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820574509&rft_id=info:pmid/15278424&rft_jstor_id=40005702&rfr_iscdi=true |