Convergent extension by intercalation without mediolaterally fixed cell motion

We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymeriza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2009-01, Vol.256 (2), p.180-186
Hauptverfasser: Backes, Tracy M., Latterman, Russell, Small, Stephen A., Mattis, Steven, Pauley, Gwyn, Reilly, Emily, Lubkin, Sharon R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 2
container_start_page 180
container_title Journal of theoretical biology
container_volume 256
creator Backes, Tracy M.
Latterman, Russell
Small, Stephen A.
Mattis, Steven
Pauley, Gwyn
Reilly, Emily
Lubkin, Sharon R.
description We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.
doi_str_mv 10.1016/j.jtbi.2008.08.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66784355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308004414</els_id><sourcerecordid>66784355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIT95a89F0U_Aii1-w6EXPIU2nmtI2a5Lq7r-3YRe8CQMDwzMvMw9ClwRnBJPips3aUJmMYiyyWIwcoTnBJU8Fz8kxmmNMacpJyWbozPsWY1zmrDhFMyJKWghG5-hlZYdvcB8whAS2AQZv7JBUu8QMAZxWnQpx8GPCpx1D0kNt7DQDp7pulzRmC3WioeuS3kbwHJ00qvNwcegL9P5w_7Z6Stevj8-ru3WqGc9DykDUQmPOqQJcY6UEqaARTGhNGMtZpVm11JQTQSstJq4mpGKNWCrKFWENW6Drfe7G2a8RfJC98fEONYAdvSyKpcgZ5xNI96B21nsHjdw40yu3kwTLaFG2MlqU0aKMxci0dHVIH6vp47-Vg7YJuN0DMP34bcBJrw0MerLjQAdZW_Nf_i8hD4Tc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66784355</pqid></control><display><type>article</type><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</creator><creatorcontrib>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</creatorcontrib><description>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.08.031</identifier><identifier>PMID: 18926832</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell Adhesion - physiology ; Cell Movement - physiology ; Cell Shape - physiology ; Convergent extension ; Intercalation ; Models, Biological ; Morphogenesis ; Morphogenesis - physiology ; Stochastic model ; Stochastic Processes</subject><ispartof>Journal of theoretical biology, 2009-01, Vol.256 (2), p.180-186</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</citedby><cites>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.08.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18926832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backes, Tracy M.</creatorcontrib><creatorcontrib>Latterman, Russell</creatorcontrib><creatorcontrib>Small, Stephen A.</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Pauley, Gwyn</creatorcontrib><creatorcontrib>Reilly, Emily</creatorcontrib><creatorcontrib>Lubkin, Sharon R.</creatorcontrib><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</description><subject>Animals</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cell Shape - physiology</subject><subject>Convergent extension</subject><subject>Intercalation</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Morphogenesis - physiology</subject><subject>Stochastic model</subject><subject>Stochastic Processes</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIT95a89F0U_Aii1-w6EXPIU2nmtI2a5Lq7r-3YRe8CQMDwzMvMw9ClwRnBJPips3aUJmMYiyyWIwcoTnBJU8Fz8kxmmNMacpJyWbozPsWY1zmrDhFMyJKWghG5-hlZYdvcB8whAS2AQZv7JBUu8QMAZxWnQpx8GPCpx1D0kNt7DQDp7pulzRmC3WioeuS3kbwHJ00qvNwcegL9P5w_7Z6Stevj8-ru3WqGc9DykDUQmPOqQJcY6UEqaARTGhNGMtZpVm11JQTQSstJq4mpGKNWCrKFWENW6Drfe7G2a8RfJC98fEONYAdvSyKpcgZ5xNI96B21nsHjdw40yu3kwTLaFG2MlqU0aKMxci0dHVIH6vp47-Vg7YJuN0DMP34bcBJrw0MerLjQAdZW_Nf_i8hD4Tc</recordid><startdate>20090121</startdate><enddate>20090121</enddate><creator>Backes, Tracy M.</creator><creator>Latterman, Russell</creator><creator>Small, Stephen A.</creator><creator>Mattis, Steven</creator><creator>Pauley, Gwyn</creator><creator>Reilly, Emily</creator><creator>Lubkin, Sharon R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090121</creationdate><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><author>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cell Shape - physiology</topic><topic>Convergent extension</topic><topic>Intercalation</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Morphogenesis - physiology</topic><topic>Stochastic model</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backes, Tracy M.</creatorcontrib><creatorcontrib>Latterman, Russell</creatorcontrib><creatorcontrib>Small, Stephen A.</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Pauley, Gwyn</creatorcontrib><creatorcontrib>Reilly, Emily</creatorcontrib><creatorcontrib>Lubkin, Sharon R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backes, Tracy M.</au><au>Latterman, Russell</au><au>Small, Stephen A.</au><au>Mattis, Steven</au><au>Pauley, Gwyn</au><au>Reilly, Emily</au><au>Lubkin, Sharon R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent extension by intercalation without mediolaterally fixed cell motion</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-01-21</date><risdate>2009</risdate><volume>256</volume><issue>2</issue><spage>180</spage><epage>186</epage><pages>180-186</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18926832</pmid><doi>10.1016/j.jtbi.2008.08.031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2009-01, Vol.256 (2), p.180-186
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_66784355
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Cell Adhesion - physiology
Cell Movement - physiology
Cell Shape - physiology
Convergent extension
Intercalation
Models, Biological
Morphogenesis
Morphogenesis - physiology
Stochastic model
Stochastic Processes
title Convergent extension by intercalation without mediolaterally fixed cell motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20extension%20by%20intercalation%20without%20mediolaterally%20fixed%20cell%20motion&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Backes,%20Tracy%20M.&rft.date=2009-01-21&rft.volume=256&rft.issue=2&rft.spage=180&rft.epage=186&rft.pages=180-186&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.08.031&rft_dat=%3Cproquest_cross%3E66784355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66784355&rft_id=info:pmid/18926832&rft_els_id=S0022519308004414&rfr_iscdi=true