Convergent extension by intercalation without mediolaterally fixed cell motion
We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymeriza...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-01, Vol.256 (2), p.180-186 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 2 |
container_start_page | 180 |
container_title | Journal of theoretical biology |
container_volume | 256 |
creator | Backes, Tracy M. Latterman, Russell Small, Stephen A. Mattis, Steven Pauley, Gwyn Reilly, Emily Lubkin, Sharon R. |
description | We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue. |
doi_str_mv | 10.1016/j.jtbi.2008.08.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66784355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308004414</els_id><sourcerecordid>66784355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIT95a89F0U_Aii1-w6EXPIU2nmtI2a5Lq7r-3YRe8CQMDwzMvMw9ClwRnBJPips3aUJmMYiyyWIwcoTnBJU8Fz8kxmmNMacpJyWbozPsWY1zmrDhFMyJKWghG5-hlZYdvcB8whAS2AQZv7JBUu8QMAZxWnQpx8GPCpx1D0kNt7DQDp7pulzRmC3WioeuS3kbwHJ00qvNwcegL9P5w_7Z6Stevj8-ru3WqGc9DykDUQmPOqQJcY6UEqaARTGhNGMtZpVm11JQTQSstJq4mpGKNWCrKFWENW6Drfe7G2a8RfJC98fEONYAdvSyKpcgZ5xNI96B21nsHjdw40yu3kwTLaFG2MlqU0aKMxci0dHVIH6vp47-Vg7YJuN0DMP34bcBJrw0MerLjQAdZW_Nf_i8hD4Tc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66784355</pqid></control><display><type>article</type><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</creator><creatorcontrib>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</creatorcontrib><description>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.08.031</identifier><identifier>PMID: 18926832</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell Adhesion - physiology ; Cell Movement - physiology ; Cell Shape - physiology ; Convergent extension ; Intercalation ; Models, Biological ; Morphogenesis ; Morphogenesis - physiology ; Stochastic model ; Stochastic Processes</subject><ispartof>Journal of theoretical biology, 2009-01, Vol.256 (2), p.180-186</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</citedby><cites>FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.08.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18926832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backes, Tracy M.</creatorcontrib><creatorcontrib>Latterman, Russell</creatorcontrib><creatorcontrib>Small, Stephen A.</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Pauley, Gwyn</creatorcontrib><creatorcontrib>Reilly, Emily</creatorcontrib><creatorcontrib>Lubkin, Sharon R.</creatorcontrib><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</description><subject>Animals</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Movement - physiology</subject><subject>Cell Shape - physiology</subject><subject>Convergent extension</subject><subject>Intercalation</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Morphogenesis - physiology</subject><subject>Stochastic model</subject><subject>Stochastic Processes</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIT95a89F0U_Aii1-w6EXPIU2nmtI2a5Lq7r-3YRe8CQMDwzMvMw9ClwRnBJPips3aUJmMYiyyWIwcoTnBJU8Fz8kxmmNMacpJyWbozPsWY1zmrDhFMyJKWghG5-hlZYdvcB8whAS2AQZv7JBUu8QMAZxWnQpx8GPCpx1D0kNt7DQDp7pulzRmC3WioeuS3kbwHJ00qvNwcegL9P5w_7Z6Stevj8-ru3WqGc9DykDUQmPOqQJcY6UEqaARTGhNGMtZpVm11JQTQSstJq4mpGKNWCrKFWENW6Drfe7G2a8RfJC98fEONYAdvSyKpcgZ5xNI96B21nsHjdw40yu3kwTLaFG2MlqU0aKMxci0dHVIH6vp47-Vg7YJuN0DMP34bcBJrw0MerLjQAdZW_Nf_i8hD4Tc</recordid><startdate>20090121</startdate><enddate>20090121</enddate><creator>Backes, Tracy M.</creator><creator>Latterman, Russell</creator><creator>Small, Stephen A.</creator><creator>Mattis, Steven</creator><creator>Pauley, Gwyn</creator><creator>Reilly, Emily</creator><creator>Lubkin, Sharon R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090121</creationdate><title>Convergent extension by intercalation without mediolaterally fixed cell motion</title><author>Backes, Tracy M. ; Latterman, Russell ; Small, Stephen A. ; Mattis, Steven ; Pauley, Gwyn ; Reilly, Emily ; Lubkin, Sharon R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-3e8d8c0552ae0d0aa81bef838cc13343bc3b7c25182bc8055d11b3f87a25a13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Movement - physiology</topic><topic>Cell Shape - physiology</topic><topic>Convergent extension</topic><topic>Intercalation</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Morphogenesis - physiology</topic><topic>Stochastic model</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backes, Tracy M.</creatorcontrib><creatorcontrib>Latterman, Russell</creatorcontrib><creatorcontrib>Small, Stephen A.</creatorcontrib><creatorcontrib>Mattis, Steven</creatorcontrib><creatorcontrib>Pauley, Gwyn</creatorcontrib><creatorcontrib>Reilly, Emily</creatorcontrib><creatorcontrib>Lubkin, Sharon R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backes, Tracy M.</au><au>Latterman, Russell</au><au>Small, Stephen A.</au><au>Mattis, Steven</au><au>Pauley, Gwyn</au><au>Reilly, Emily</au><au>Lubkin, Sharon R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergent extension by intercalation without mediolaterally fixed cell motion</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-01-21</date><risdate>2009</risdate><volume>256</volume><issue>2</issue><spage>180</spage><epage>186</epage><pages>180-186</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell–cell and cell–ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18926832</pmid><doi>10.1016/j.jtbi.2008.08.031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-01, Vol.256 (2), p.180-186 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_66784355 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Cell Adhesion - physiology Cell Movement - physiology Cell Shape - physiology Convergent extension Intercalation Models, Biological Morphogenesis Morphogenesis - physiology Stochastic model Stochastic Processes |
title | Convergent extension by intercalation without mediolaterally fixed cell motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergent%20extension%20by%20intercalation%20without%20mediolaterally%20fixed%20cell%20motion&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Backes,%20Tracy%20M.&rft.date=2009-01-21&rft.volume=256&rft.issue=2&rft.spage=180&rft.epage=186&rft.pages=180-186&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.08.031&rft_dat=%3Cproquest_cross%3E66784355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66784355&rft_id=info:pmid/18926832&rft_els_id=S0022519308004414&rfr_iscdi=true |