Measuring complexity using FuzzyEn, ApEn, and SampEn

Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2009-01, Vol.31 (1), p.61-68
Hauptverfasser: Chen, Weiting, Zhuang, Jun, Yu, Wangxin, Wang, Zhizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 61
container_title Medical engineering & physics
container_volume 31
creator Chen, Weiting
Zhuang, Jun
Yu, Wangxin
Wang, Zhizhong
description Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.
doi_str_mv 10.1016/j.medengphy.2008.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66780998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1350453308000726</els_id><sourcerecordid>66780998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eou3CX4A9cSLp-Nu5IK2qliK14lA4W44zW7zkC3tTkf56HO0KpF7oZWZkvTOv9byEvKdQUqDqfFd22GB_P_6YSwZgShAlgHxBTqnRvBDA4WWeuYRCSM5PyFlKOwAQQvHX5IQayY1i8pSIW3RpiqG_X_uhG1v8HfbzekrLw9X0-Dhf9h_Xm3Gprm_Wd67L8xvyauvahG-PfUW-X11-u7gubr5-_nKxuSm8hGpfGAGAtVGy1kZ6UIIx5eutbrSmHCrtfCMVrSusZP50zYE1rBE1mIrXzEnFV-TD4e4Yh18Tpr3tQvLYtq7HYUpWKW2gqsx_hQy4kTK7rog-CH0cUoq4tWMMnYuzpWAXsnZn_5K1C1kLwmayefPd0WKqs-Lf3hFlFmwOAsxEHgJGm3zA3mMTIvq9bYbwDJNPT274NvTBu_Ynzph2wxT7DNxSm5gFe7cEvOQLJmermeJ_ACDuoII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20385571</pqid></control><display><type>article</type><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</creator><creatorcontrib>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</creatorcontrib><description>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2008.04.005</identifier><identifier>PMID: 18538625</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ApEn ; Complexity ; Computer Simulation ; Electromyography ; Entropy ; Fuzzy Logic ; FuzzyEn ; Models, Biological ; Nonlinear ; Probability ; Radiology ; Reproducibility of Results ; SampEn</subject><ispartof>Medical engineering &amp; physics, 2009-01, Vol.31 (1), p.61-68</ispartof><rights>IPEM</rights><rights>2008 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</citedby><cites>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2008.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18538625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Weiting</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Yu, Wangxin</creatorcontrib><creatorcontrib>Wang, Zhizhong</creatorcontrib><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</description><subject>ApEn</subject><subject>Complexity</subject><subject>Computer Simulation</subject><subject>Electromyography</subject><subject>Entropy</subject><subject>Fuzzy Logic</subject><subject>FuzzyEn</subject><subject>Models, Biological</subject><subject>Nonlinear</subject><subject>Probability</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>SampEn</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0Eou3CX4A9cSLp-Nu5IK2qliK14lA4W44zW7zkC3tTkf56HO0KpF7oZWZkvTOv9byEvKdQUqDqfFd22GB_P_6YSwZgShAlgHxBTqnRvBDA4WWeuYRCSM5PyFlKOwAQQvHX5IQayY1i8pSIW3RpiqG_X_uhG1v8HfbzekrLw9X0-Dhf9h_Xm3Gprm_Wd67L8xvyauvahG-PfUW-X11-u7gubr5-_nKxuSm8hGpfGAGAtVGy1kZ6UIIx5eutbrSmHCrtfCMVrSusZP50zYE1rBE1mIrXzEnFV-TD4e4Yh18Tpr3tQvLYtq7HYUpWKW2gqsx_hQy4kTK7rog-CH0cUoq4tWMMnYuzpWAXsnZn_5K1C1kLwmayefPd0WKqs-Lf3hFlFmwOAsxEHgJGm3zA3mMTIvq9bYbwDJNPT274NvTBu_Ynzph2wxT7DNxSm5gFe7cEvOQLJmermeJ_ACDuoII</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Chen, Weiting</creator><creator>Zhuang, Jun</creator><creator>Yu, Wangxin</creator><creator>Wang, Zhizhong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><author>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ApEn</topic><topic>Complexity</topic><topic>Computer Simulation</topic><topic>Electromyography</topic><topic>Entropy</topic><topic>Fuzzy Logic</topic><topic>FuzzyEn</topic><topic>Models, Biological</topic><topic>Nonlinear</topic><topic>Probability</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>SampEn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weiting</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Yu, Wangxin</creatorcontrib><creatorcontrib>Wang, Zhizhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Weiting</au><au>Zhuang, Jun</au><au>Yu, Wangxin</au><au>Wang, Zhizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring complexity using FuzzyEn, ApEn, and SampEn</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>31</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18538625</pmid><doi>10.1016/j.medengphy.2008.04.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2009-01, Vol.31 (1), p.61-68
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_66780998
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects ApEn
Complexity
Computer Simulation
Electromyography
Entropy
Fuzzy Logic
FuzzyEn
Models, Biological
Nonlinear
Probability
Radiology
Reproducibility of Results
SampEn
title Measuring complexity using FuzzyEn, ApEn, and SampEn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20complexity%20using%20FuzzyEn,%20ApEn,%20and%20SampEn&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Chen,%20Weiting&rft.date=2009-01-01&rft.volume=31&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2008.04.005&rft_dat=%3Cproquest_cross%3E66780998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20385571&rft_id=info:pmid/18538625&rft_els_id=1_s2_0_S1350453308000726&rfr_iscdi=true