Measuring complexity using FuzzyEn, ApEn, and SampEn
Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2009-01, Vol.31 (1), p.61-68 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Medical engineering & physics |
container_volume | 31 |
creator | Chen, Weiting Zhuang, Jun Yu, Wangxin Wang, Zhizhong |
description | Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise. |
doi_str_mv | 10.1016/j.medengphy.2008.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66780998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1350453308000726</els_id><sourcerecordid>66780998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eou3CX4A9cSLp-Nu5IK2qliK14lA4W44zW7zkC3tTkf56HO0KpF7oZWZkvTOv9byEvKdQUqDqfFd22GB_P_6YSwZgShAlgHxBTqnRvBDA4WWeuYRCSM5PyFlKOwAQQvHX5IQayY1i8pSIW3RpiqG_X_uhG1v8HfbzekrLw9X0-Dhf9h_Xm3Gprm_Wd67L8xvyauvahG-PfUW-X11-u7gubr5-_nKxuSm8hGpfGAGAtVGy1kZ6UIIx5eutbrSmHCrtfCMVrSusZP50zYE1rBE1mIrXzEnFV-TD4e4Yh18Tpr3tQvLYtq7HYUpWKW2gqsx_hQy4kTK7rog-CH0cUoq4tWMMnYuzpWAXsnZn_5K1C1kLwmayefPd0WKqs-Lf3hFlFmwOAsxEHgJGm3zA3mMTIvq9bYbwDJNPT274NvTBu_Ynzph2wxT7DNxSm5gFe7cEvOQLJmermeJ_ACDuoII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20385571</pqid></control><display><type>article</type><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</creator><creatorcontrib>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</creatorcontrib><description>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2008.04.005</identifier><identifier>PMID: 18538625</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ApEn ; Complexity ; Computer Simulation ; Electromyography ; Entropy ; Fuzzy Logic ; FuzzyEn ; Models, Biological ; Nonlinear ; Probability ; Radiology ; Reproducibility of Results ; SampEn</subject><ispartof>Medical engineering & physics, 2009-01, Vol.31 (1), p.61-68</ispartof><rights>IPEM</rights><rights>2008 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</citedby><cites>FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2008.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18538625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Weiting</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Yu, Wangxin</creatorcontrib><creatorcontrib>Wang, Zhizhong</creatorcontrib><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><title>Medical engineering & physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</description><subject>ApEn</subject><subject>Complexity</subject><subject>Computer Simulation</subject><subject>Electromyography</subject><subject>Entropy</subject><subject>Fuzzy Logic</subject><subject>FuzzyEn</subject><subject>Models, Biological</subject><subject>Nonlinear</subject><subject>Probability</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>SampEn</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0Eou3CX4A9cSLp-Nu5IK2qliK14lA4W44zW7zkC3tTkf56HO0KpF7oZWZkvTOv9byEvKdQUqDqfFd22GB_P_6YSwZgShAlgHxBTqnRvBDA4WWeuYRCSM5PyFlKOwAQQvHX5IQayY1i8pSIW3RpiqG_X_uhG1v8HfbzekrLw9X0-Dhf9h_Xm3Gprm_Wd67L8xvyauvahG-PfUW-X11-u7gubr5-_nKxuSm8hGpfGAGAtVGy1kZ6UIIx5eutbrSmHCrtfCMVrSusZP50zYE1rBE1mIrXzEnFV-TD4e4Yh18Tpr3tQvLYtq7HYUpWKW2gqsx_hQy4kTK7rog-CH0cUoq4tWMMnYuzpWAXsnZn_5K1C1kLwmayefPd0WKqs-Lf3hFlFmwOAsxEHgJGm3zA3mMTIvq9bYbwDJNPT274NvTBu_Ynzph2wxT7DNxSm5gFe7cEvOQLJmermeJ_ACDuoII</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Chen, Weiting</creator><creator>Zhuang, Jun</creator><creator>Yu, Wangxin</creator><creator>Wang, Zhizhong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Measuring complexity using FuzzyEn, ApEn, and SampEn</title><author>Chen, Weiting ; Zhuang, Jun ; Yu, Wangxin ; Wang, Zhizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-8400eb865b785c064226cbf7d7713097acd561b9e95873b302d2d4b0893b2a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ApEn</topic><topic>Complexity</topic><topic>Computer Simulation</topic><topic>Electromyography</topic><topic>Entropy</topic><topic>Fuzzy Logic</topic><topic>FuzzyEn</topic><topic>Models, Biological</topic><topic>Nonlinear</topic><topic>Probability</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>SampEn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weiting</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><creatorcontrib>Yu, Wangxin</creatorcontrib><creatorcontrib>Wang, Zhizhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering & physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Weiting</au><au>Zhuang, Jun</au><au>Yu, Wangxin</au><au>Wang, Zhizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring complexity using FuzzyEn, ApEn, and SampEn</atitle><jtitle>Medical engineering & physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>31</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract This paper compares three related measures of complexity, ApEn, SampEn, and FuzzyEn. Since vectors’ similarity is defined on the basis of the hard and sensitive boundary of Heaviside function in ApEn and SampEn, the two families of statistics show high sensitivity to the parameter selection and may be invalid in case of small parameter. Importing the concept of fuzzy sets, we developed a new measure FuzzyEn, where vectors’ similarity is defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes. The soft and continuous boundaries of fuzzy functions ensure the continuity as well as the validity of FuzzyEn at small parameters. The more details obtained by fuzzy functions also make FuzzyEn a more accurate entropy definition than ApEn and SampEn. In addition, similarity definition based on vectors’ shapes, together with the exclusion of self-matches, earns FuzzyEn stronger relative consistency and less dependence on data length. Both theoretical analysis and experimental results show that FuzzyEn provides an improved evaluation of signal complexity and can be more conveniently and powerfully applied to short time series contaminated by noise.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18538625</pmid><doi>10.1016/j.medengphy.2008.04.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4533 |
ispartof | Medical engineering & physics, 2009-01, Vol.31 (1), p.61-68 |
issn | 1350-4533 1873-4030 |
language | eng |
recordid | cdi_proquest_miscellaneous_66780998 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | ApEn Complexity Computer Simulation Electromyography Entropy Fuzzy Logic FuzzyEn Models, Biological Nonlinear Probability Radiology Reproducibility of Results SampEn |
title | Measuring complexity using FuzzyEn, ApEn, and SampEn |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20complexity%20using%20FuzzyEn,%20ApEn,%20and%20SampEn&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Chen,%20Weiting&rft.date=2009-01-01&rft.volume=31&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2008.04.005&rft_dat=%3Cproquest_cross%3E66780998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20385571&rft_id=info:pmid/18538625&rft_els_id=1_s2_0_S1350453308000726&rfr_iscdi=true |