Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice
BC1 RNA is a small non-messenger RNA common in dendritic microdomains of neurons in rodents. In order to investigate its possible role in learning and behaviour, we compared controls and knockout mice from three independent founder lines established from separate embryonic stem cells. Mutant mice we...
Gespeichert in:
Veröffentlicht in: | Behavioural brain research 2004-09, Vol.154 (1), p.273-289 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BC1 RNA is a small non-messenger RNA common in dendritic microdomains of neurons in rodents. In order to investigate its possible role in learning and behaviour, we compared controls and knockout mice from three independent founder lines established from separate embryonic stem cells. Mutant mice were healthy with normal brain morphology and appeared to have no neurological deficits. A series of tests for exploration and spatial memory was carried out in three different laboratories. The tests were chosen as to ensure that different aspects of spatial memory and exploration could be separated and that possible effects of confounding variables could be minimised. Exploration was studied in a barrier test, in an open-field test, and in an elevated plus-maze test. Spatial memory was investigated in a Barnes maze and in a Morris water maze (memory for a single location), in a multiple T-maze and in a complex alley maze (route learning), and in a radial maze (working memory). In addition to these laboratory tasks, exploratory behaviour and spatial memory were assessed under semi-naturalistic conditions in a large outdoor pen. The combined results indicate that BC1 RNA-deficient animals show behavioural changes best interpreted in terms of reduced exploration and increased anxiety. In contrast, spatial memory was not affected. In the outdoor pen, the survival rates of BC1-depleted mice were lower than in controls. Thus, we conclude that the neuron-specific non-messenger BC1 RNA contributes to the aptive modulation of behaviour. |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2004.02.015 |