Inferring models of gene expression dynamics
We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dy...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2004-10, Vol.230 (3), p.289-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 289 |
container_title | Journal of theoretical biology |
container_volume | 230 |
creator | Perkins, Theodore J Hallett, Mike Glass, Leon |
description | We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in
Arabidopsis thaliana. |
doi_str_mv | 10.1016/j.jtbi.2004.05.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66773995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304002486</els_id><sourcerecordid>17704765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK3-AReSlSsT7zyTATdSfBQKbnQ9zExuypQmqTOt2H9vSgvudHXhcr6zOIRcUygoUHW_LJYbFwoGIAqQBTB2QsYUtMwrKegpGcPwyiXVfEQuUloCgBZcnZMRlRyY5HpM7mZdgzGGbpG1fY2rlPVNtsAOM_xeR0wp9F1W7zrbBp8uyVljVwmvjndCPp6f3qev-fztZTZ9nOeeV3yTe8-sd5X2zjqnlS99hQIbL3RjqVSUYaWZ4JYxYM5y0QhHuXZNCUoxXnI-IbcH7zr2n1tMG9OG5HG1sh3222SUKkuutfwXpGUJolR7kB1AH_uUIjZmHUNr485QMPuYZmn2Mc0-pgFphnLD6OZo37oW69_Jsd4APByAoRt-BYwm-YCdxzpE9BtT9-Ev_w_1RISm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17704765</pqid></control><display><type>article</type><title>Inferring models of gene expression dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</creator><creatorcontrib>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</creatorcontrib><description>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in
Arabidopsis thaliana.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.05.022</identifier><identifier>PMID: 15302539</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arabidopsis - genetics ; Arabidopsis thaliana ; Computational Biology ; Differential equations ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genetic network inference ; Logic ; Models, Genetic ; Morphogenesis - genetics ; Time Factors</subject><ispartof>Journal of theoretical biology, 2004-10, Vol.230 (3), p.289-299</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</citedby><cites>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519304002486$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15302539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Theodore J</creatorcontrib><creatorcontrib>Hallett, Mike</creatorcontrib><creatorcontrib>Glass, Leon</creatorcontrib><title>Inferring models of gene expression dynamics</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in
Arabidopsis thaliana.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Computational Biology</subject><subject>Differential equations</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic network inference</subject><subject>Logic</subject><subject>Models, Genetic</subject><subject>Morphogenesis - genetics</subject><subject>Time Factors</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AURgdRbK3-AReSlSsT7zyTATdSfBQKbnQ9zExuypQmqTOt2H9vSgvudHXhcr6zOIRcUygoUHW_LJYbFwoGIAqQBTB2QsYUtMwrKegpGcPwyiXVfEQuUloCgBZcnZMRlRyY5HpM7mZdgzGGbpG1fY2rlPVNtsAOM_xeR0wp9F1W7zrbBp8uyVljVwmvjndCPp6f3qev-fztZTZ9nOeeV3yTe8-sd5X2zjqnlS99hQIbL3RjqVSUYaWZ4JYxYM5y0QhHuXZNCUoxXnI-IbcH7zr2n1tMG9OG5HG1sh3222SUKkuutfwXpGUJolR7kB1AH_uUIjZmHUNr485QMPuYZmn2Mc0-pgFphnLD6OZo37oW69_Jsd4APByAoRt-BYwm-YCdxzpE9BtT9-Ev_w_1RISm</recordid><startdate>20041007</startdate><enddate>20041007</enddate><creator>Perkins, Theodore J</creator><creator>Hallett, Mike</creator><creator>Glass, Leon</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041007</creationdate><title>Inferring models of gene expression dynamics</title><author>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Computational Biology</topic><topic>Differential equations</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic network inference</topic><topic>Logic</topic><topic>Models, Genetic</topic><topic>Morphogenesis - genetics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Theodore J</creatorcontrib><creatorcontrib>Hallett, Mike</creatorcontrib><creatorcontrib>Glass, Leon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Theodore J</au><au>Hallett, Mike</au><au>Glass, Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring models of gene expression dynamics</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-10-07</date><risdate>2004</risdate><volume>230</volume><issue>3</issue><spage>289</spage><epage>299</epage><pages>289-299</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in
Arabidopsis thaliana.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15302539</pmid><doi>10.1016/j.jtbi.2004.05.022</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2004-10, Vol.230 (3), p.289-299 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_66773995 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Arabidopsis - genetics Arabidopsis thaliana Computational Biology Differential equations Gene Expression Regulation Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Genetic network inference Logic Models, Genetic Morphogenesis - genetics Time Factors |
title | Inferring models of gene expression dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20models%20of%20gene%20expression%20dynamics&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Perkins,%20Theodore%20J&rft.date=2004-10-07&rft.volume=230&rft.issue=3&rft.spage=289&rft.epage=299&rft.pages=289-299&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.05.022&rft_dat=%3Cproquest_cross%3E17704765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17704765&rft_id=info:pmid/15302539&rft_els_id=S0022519304002486&rfr_iscdi=true |