Inferring models of gene expression dynamics

We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2004-10, Vol.230 (3), p.289-299
Hauptverfasser: Perkins, Theodore J, Hallett, Mike, Glass, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 289
container_title Journal of theoretical biology
container_volume 230
creator Perkins, Theodore J
Hallett, Mike
Glass, Leon
description We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in Arabidopsis thaliana.
doi_str_mv 10.1016/j.jtbi.2004.05.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66773995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304002486</els_id><sourcerecordid>17704765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRbK3-AReSlSsT7zyTATdSfBQKbnQ9zExuypQmqTOt2H9vSgvudHXhcr6zOIRcUygoUHW_LJYbFwoGIAqQBTB2QsYUtMwrKegpGcPwyiXVfEQuUloCgBZcnZMRlRyY5HpM7mZdgzGGbpG1fY2rlPVNtsAOM_xeR0wp9F1W7zrbBp8uyVljVwmvjndCPp6f3qev-fztZTZ9nOeeV3yTe8-sd5X2zjqnlS99hQIbL3RjqVSUYaWZ4JYxYM5y0QhHuXZNCUoxXnI-IbcH7zr2n1tMG9OG5HG1sh3222SUKkuutfwXpGUJolR7kB1AH_uUIjZmHUNr485QMPuYZmn2Mc0-pgFphnLD6OZo37oW69_Jsd4APByAoRt-BYwm-YCdxzpE9BtT9-Ev_w_1RISm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17704765</pqid></control><display><type>article</type><title>Inferring models of gene expression dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</creator><creatorcontrib>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</creatorcontrib><description>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in Arabidopsis thaliana.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.05.022</identifier><identifier>PMID: 15302539</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arabidopsis - genetics ; Arabidopsis thaliana ; Computational Biology ; Differential equations ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genetic network inference ; Logic ; Models, Genetic ; Morphogenesis - genetics ; Time Factors</subject><ispartof>Journal of theoretical biology, 2004-10, Vol.230 (3), p.289-299</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</citedby><cites>FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519304002486$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15302539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Theodore J</creatorcontrib><creatorcontrib>Hallett, Mike</creatorcontrib><creatorcontrib>Glass, Leon</creatorcontrib><title>Inferring models of gene expression dynamics</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in Arabidopsis thaliana.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Computational Biology</subject><subject>Differential equations</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic network inference</subject><subject>Logic</subject><subject>Models, Genetic</subject><subject>Morphogenesis - genetics</subject><subject>Time Factors</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AURgdRbK3-AReSlSsT7zyTATdSfBQKbnQ9zExuypQmqTOt2H9vSgvudHXhcr6zOIRcUygoUHW_LJYbFwoGIAqQBTB2QsYUtMwrKegpGcPwyiXVfEQuUloCgBZcnZMRlRyY5HpM7mZdgzGGbpG1fY2rlPVNtsAOM_xeR0wp9F1W7zrbBp8uyVljVwmvjndCPp6f3qev-fztZTZ9nOeeV3yTe8-sd5X2zjqnlS99hQIbL3RjqVSUYaWZ4JYxYM5y0QhHuXZNCUoxXnI-IbcH7zr2n1tMG9OG5HG1sh3222SUKkuutfwXpGUJolR7kB1AH_uUIjZmHUNr485QMPuYZmn2Mc0-pgFphnLD6OZo37oW69_Jsd4APByAoRt-BYwm-YCdxzpE9BtT9-Ev_w_1RISm</recordid><startdate>20041007</startdate><enddate>20041007</enddate><creator>Perkins, Theodore J</creator><creator>Hallett, Mike</creator><creator>Glass, Leon</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041007</creationdate><title>Inferring models of gene expression dynamics</title><author>Perkins, Theodore J ; Hallett, Mike ; Glass, Leon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cc2acb89cbabb96c7c8e4efc49fa15612e89243a2202ba34f4b139bf706623733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Computational Biology</topic><topic>Differential equations</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic network inference</topic><topic>Logic</topic><topic>Models, Genetic</topic><topic>Morphogenesis - genetics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Theodore J</creatorcontrib><creatorcontrib>Hallett, Mike</creatorcontrib><creatorcontrib>Glass, Leon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Theodore J</au><au>Hallett, Mike</au><au>Glass, Leon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring models of gene expression dynamics</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-10-07</date><risdate>2004</risdate><volume>230</volume><issue>3</issue><spage>289</spage><epage>299</epage><pages>289-299</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only some of the genes, we show that the structure of the network for these “visible” genes can be identified and that the size and overall complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral morphogenesis in Arabidopsis thaliana.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15302539</pmid><doi>10.1016/j.jtbi.2004.05.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2004-10, Vol.230 (3), p.289-299
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_66773995
source MEDLINE; Elsevier ScienceDirect Journals
subjects Arabidopsis - genetics
Arabidopsis thaliana
Computational Biology
Differential equations
Gene Expression Regulation
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genetic network inference
Logic
Models, Genetic
Morphogenesis - genetics
Time Factors
title Inferring models of gene expression dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20models%20of%20gene%20expression%20dynamics&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Perkins,%20Theodore%20J&rft.date=2004-10-07&rft.volume=230&rft.issue=3&rft.spage=289&rft.epage=299&rft.pages=289-299&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.05.022&rft_dat=%3Cproquest_cross%3E17704765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17704765&rft_id=info:pmid/15302539&rft_els_id=S0022519304002486&rfr_iscdi=true