Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart
Fatty acid (FA) metabolism is suppressed under conditions of cardioplegic arrest, but the mechanism behind this effect is unknown. We hypothesized that alterations in redox state and oxygen demand control myocardial FA utilization during potassium arrest. Rat hearts were perfused with Krebs-Heinsele...
Gespeichert in:
Veröffentlicht in: | Surgery 2004-08, Vol.136 (2), p.150-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 150 |
container_title | Surgery |
container_volume | 136 |
creator | Peltz, Matthias He, Tian-Teng Adams, Glenn A. Chao, Robert Y. Jessen, Michael E. |
description | Fatty acid (FA) metabolism is suppressed under conditions of cardioplegic arrest, but the mechanism behind this effect is unknown. We hypothesized that alterations in redox state and oxygen demand control myocardial FA utilization during potassium arrest.
Rat hearts were perfused with Krebs-Heinseleit buffer containing physiologic concentrations of FAs, ketones, and carbohydrates with unique 13Carbon labeling patterns. Cytosolic and mitochondrial redox states were altered by manipulating the lactate/pyruvate and ketone redox couples, respectively. Myocardial oxygen consumption was increased by adding the mitochondrial uncoupler 2,4-dinitrophenol to the perfusate. Experiments were conducted under conditions of normokalemic perfusion and potassium cardioplegia (PC). Substrate oxidation rates were derived from 13Carbon isotopomer data and myocardial oxygen consumption.
Continuous perfusion under conditions of potassium arrest dramatically reduced fatty acid oxidation. Both the addition of 2,4-dinitrophenol and alteration of mitochondrial redox state significantly increased FA oxidation during PC. In contrast to normokalemic perfusion, altering cytosolic redox state during PC did not change FA oxidation.
These data suggest that mitochondrial redox state and oxygen demand are important determinants of myocardial FA oxidation during potassium arrest. FA oxidation appears to be regulated by different factors during PC than normokalemic perfusion. |
doi_str_mv | 10.1016/j.surg.2004.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66772170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039606004001680</els_id><sourcerecordid>66772170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5e116e48efef8d0603c5e0e388e9580a8f27bf97b50bc44b9eb7340b10b235423</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EokvhD3BAvsAtyzhO4kTigiq-pCIucLYm9rj1KokX26m6_x5Hu1JvSDOayzOjdx7G3grYCxDdx8M-rfFuXwM0-61APWM70cq6UrITz9kOQA5VBx1csVcpHQBgaET_kl0VCECoZsfsz1MwGK3HiYfH0x0t3NKMi-VbR7LhkaeMmTg6RyZzhzmfOBpvC-8tZh8W7hee74kfQ8aU_DpXGCOlTJbfE8b8mr1wOCV6c5nX7M_XL79vvle3v779uPl8WxnZ17lqSYiOmp4cud6W2NK0BCT7noa2B-xdrUY3qLGF0TTNONCoZAOjgLGWbVPLa_bhfPcYw9-1BNCzT4amCRcKa9Jdp1QtFBSwPoMmhpQiOX2MfsZ40gL05lYf9OZWb271VqDK0rvL9XWcyT6tXGQW4P0FwGRwchEX49MTVx5S_SAL9-nMUXHx4CnqZDwthqyPRbG2wf8vxz8dU5iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66772170</pqid></control><display><type>article</type><title>Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Peltz, Matthias ; He, Tian-Teng ; Adams, Glenn A. ; Chao, Robert Y. ; Jessen, Michael E.</creator><creatorcontrib>Peltz, Matthias ; He, Tian-Teng ; Adams, Glenn A. ; Chao, Robert Y. ; Jessen, Michael E.</creatorcontrib><description>Fatty acid (FA) metabolism is suppressed under conditions of cardioplegic arrest, but the mechanism behind this effect is unknown. We hypothesized that alterations in redox state and oxygen demand control myocardial FA utilization during potassium arrest.
Rat hearts were perfused with Krebs-Heinseleit buffer containing physiologic concentrations of FAs, ketones, and carbohydrates with unique 13Carbon labeling patterns. Cytosolic and mitochondrial redox states were altered by manipulating the lactate/pyruvate and ketone redox couples, respectively. Myocardial oxygen consumption was increased by adding the mitochondrial uncoupler 2,4-dinitrophenol to the perfusate. Experiments were conducted under conditions of normokalemic perfusion and potassium cardioplegia (PC). Substrate oxidation rates were derived from 13Carbon isotopomer data and myocardial oxygen consumption.
Continuous perfusion under conditions of potassium arrest dramatically reduced fatty acid oxidation. Both the addition of 2,4-dinitrophenol and alteration of mitochondrial redox state significantly increased FA oxidation during PC. In contrast to normokalemic perfusion, altering cytosolic redox state during PC did not change FA oxidation.
These data suggest that mitochondrial redox state and oxygen demand are important determinants of myocardial FA oxidation during potassium arrest. FA oxidation appears to be regulated by different factors during PC than normokalemic perfusion.</description><identifier>ISSN: 0039-6060</identifier><identifier>EISSN: 1532-7361</identifier><identifier>DOI: 10.1016/j.surg.2004.04.007</identifier><identifier>PMID: 15300174</identifier><identifier>CODEN: SURGAZ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - metabolism ; Animals ; Biological and medical sciences ; Fatty Acids - metabolism ; General aspects ; Heart Arrest, Induced ; Male ; Medical sciences ; Myocardium - metabolism ; Oxidation-Reduction ; Oxygen Consumption ; Potassium - pharmacology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Surgery, 2004-08, Vol.136 (2), p.150-159</ispartof><rights>2004 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5e116e48efef8d0603c5e0e388e9580a8f27bf97b50bc44b9eb7340b10b235423</citedby><cites>FETCH-LOGICAL-c382t-5e116e48efef8d0603c5e0e388e9580a8f27bf97b50bc44b9eb7340b10b235423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surg.2004.04.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16037893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15300174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peltz, Matthias</creatorcontrib><creatorcontrib>He, Tian-Teng</creatorcontrib><creatorcontrib>Adams, Glenn A.</creatorcontrib><creatorcontrib>Chao, Robert Y.</creatorcontrib><creatorcontrib>Jessen, Michael E.</creatorcontrib><title>Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart</title><title>Surgery</title><addtitle>Surgery</addtitle><description>Fatty acid (FA) metabolism is suppressed under conditions of cardioplegic arrest, but the mechanism behind this effect is unknown. We hypothesized that alterations in redox state and oxygen demand control myocardial FA utilization during potassium arrest.
Rat hearts were perfused with Krebs-Heinseleit buffer containing physiologic concentrations of FAs, ketones, and carbohydrates with unique 13Carbon labeling patterns. Cytosolic and mitochondrial redox states were altered by manipulating the lactate/pyruvate and ketone redox couples, respectively. Myocardial oxygen consumption was increased by adding the mitochondrial uncoupler 2,4-dinitrophenol to the perfusate. Experiments were conducted under conditions of normokalemic perfusion and potassium cardioplegia (PC). Substrate oxidation rates were derived from 13Carbon isotopomer data and myocardial oxygen consumption.
Continuous perfusion under conditions of potassium arrest dramatically reduced fatty acid oxidation. Both the addition of 2,4-dinitrophenol and alteration of mitochondrial redox state significantly increased FA oxidation during PC. In contrast to normokalemic perfusion, altering cytosolic redox state during PC did not change FA oxidation.
These data suggest that mitochondrial redox state and oxygen demand are important determinants of myocardial FA oxidation during potassium arrest. FA oxidation appears to be regulated by different factors during PC than normokalemic perfusion.</description><subject>Acetyl Coenzyme A - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Fatty Acids - metabolism</subject><subject>General aspects</subject><subject>Heart Arrest, Induced</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Myocardium - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxygen Consumption</subject><subject>Potassium - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0039-6060</issn><issn>1532-7361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EokvhD3BAvsAtyzhO4kTigiq-pCIucLYm9rj1KokX26m6_x5Hu1JvSDOayzOjdx7G3grYCxDdx8M-rfFuXwM0-61APWM70cq6UrITz9kOQA5VBx1csVcpHQBgaET_kl0VCECoZsfsz1MwGK3HiYfH0x0t3NKMi-VbR7LhkaeMmTg6RyZzhzmfOBpvC-8tZh8W7hee74kfQ8aU_DpXGCOlTJbfE8b8mr1wOCV6c5nX7M_XL79vvle3v779uPl8WxnZ17lqSYiOmp4cud6W2NK0BCT7noa2B-xdrUY3qLGF0TTNONCoZAOjgLGWbVPLa_bhfPcYw9-1BNCzT4amCRcKa9Jdp1QtFBSwPoMmhpQiOX2MfsZ40gL05lYf9OZWb271VqDK0rvL9XWcyT6tXGQW4P0FwGRwchEX49MTVx5S_SAL9-nMUXHx4CnqZDwthqyPRbG2wf8vxz8dU5iw</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Peltz, Matthias</creator><creator>He, Tian-Teng</creator><creator>Adams, Glenn A.</creator><creator>Chao, Robert Y.</creator><creator>Jessen, Michael E.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart</title><author>Peltz, Matthias ; He, Tian-Teng ; Adams, Glenn A. ; Chao, Robert Y. ; Jessen, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5e116e48efef8d0603c5e0e388e9580a8f27bf97b50bc44b9eb7340b10b235423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acetyl Coenzyme A - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Fatty Acids - metabolism</topic><topic>General aspects</topic><topic>Heart Arrest, Induced</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Myocardium - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxygen Consumption</topic><topic>Potassium - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peltz, Matthias</creatorcontrib><creatorcontrib>He, Tian-Teng</creatorcontrib><creatorcontrib>Adams, Glenn A.</creatorcontrib><creatorcontrib>Chao, Robert Y.</creatorcontrib><creatorcontrib>Jessen, Michael E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peltz, Matthias</au><au>He, Tian-Teng</au><au>Adams, Glenn A.</au><au>Chao, Robert Y.</au><au>Jessen, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart</atitle><jtitle>Surgery</jtitle><addtitle>Surgery</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>136</volume><issue>2</issue><spage>150</spage><epage>159</epage><pages>150-159</pages><issn>0039-6060</issn><eissn>1532-7361</eissn><coden>SURGAZ</coden><abstract>Fatty acid (FA) metabolism is suppressed under conditions of cardioplegic arrest, but the mechanism behind this effect is unknown. We hypothesized that alterations in redox state and oxygen demand control myocardial FA utilization during potassium arrest.
Rat hearts were perfused with Krebs-Heinseleit buffer containing physiologic concentrations of FAs, ketones, and carbohydrates with unique 13Carbon labeling patterns. Cytosolic and mitochondrial redox states were altered by manipulating the lactate/pyruvate and ketone redox couples, respectively. Myocardial oxygen consumption was increased by adding the mitochondrial uncoupler 2,4-dinitrophenol to the perfusate. Experiments were conducted under conditions of normokalemic perfusion and potassium cardioplegia (PC). Substrate oxidation rates were derived from 13Carbon isotopomer data and myocardial oxygen consumption.
Continuous perfusion under conditions of potassium arrest dramatically reduced fatty acid oxidation. Both the addition of 2,4-dinitrophenol and alteration of mitochondrial redox state significantly increased FA oxidation during PC. In contrast to normokalemic perfusion, altering cytosolic redox state during PC did not change FA oxidation.
These data suggest that mitochondrial redox state and oxygen demand are important determinants of myocardial FA oxidation during potassium arrest. FA oxidation appears to be regulated by different factors during PC than normokalemic perfusion.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>15300174</pmid><doi>10.1016/j.surg.2004.04.007</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6060 |
ispartof | Surgery, 2004-08, Vol.136 (2), p.150-159 |
issn | 0039-6060 1532-7361 |
language | eng |
recordid | cdi_proquest_miscellaneous_66772170 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acetyl Coenzyme A - metabolism Animals Biological and medical sciences Fatty Acids - metabolism General aspects Heart Arrest, Induced Male Medical sciences Myocardium - metabolism Oxidation-Reduction Oxygen Consumption Potassium - pharmacology Rats Rats, Sprague-Dawley |
title | Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myocardial%20oxygen%20demand%20and%20redox%20state%20affect%20fatty%20acid%20oxidation%20in%20the%20potassium-arrested%20heart&rft.jtitle=Surgery&rft.au=Peltz,%20Matthias&rft.date=2004-08-01&rft.volume=136&rft.issue=2&rft.spage=150&rft.epage=159&rft.pages=150-159&rft.issn=0039-6060&rft.eissn=1532-7361&rft.coden=SURGAZ&rft_id=info:doi/10.1016/j.surg.2004.04.007&rft_dat=%3Cproquest_cross%3E66772170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66772170&rft_id=info:pmid/15300174&rft_els_id=S0039606004001680&rfr_iscdi=true |