Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body

In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2004-08, Vol.7 (2), p.167-178
Hauptverfasser: Scott, Ryan C., Schuldiner, Oren, Neufeld, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 2
container_start_page 167
container_title Developmental cell
container_volume 7
creator Scott, Ryan C.
Schuldiner, Oren
Neufeld, Thomas P.
description In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.
doi_str_mv 10.1016/j.devcel.2004.07.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66770266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S153458070400245X</els_id><sourcerecordid>66770266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-325c45ed94ce5e343f0f4dee0a022a0137352341d1d755ee6d503bd522897fd83</originalsourceid><addsrcrecordid>eNqFkMlOwzAURS0EYv4DhLxil_A8xekGCcooVSAxrC0Tv4CrNC5xUql_j0srsYOVB517n94h5IRBzoAV59Pc4aLCJucAMgedA4y2yD4rdZkxpdh2uishM1WC3iMHMU4hxVgJu2SPKT4qNJP75PE5NEht6-gzfgyN7X1oaajpS2-7xc8re2jdUKGjl0Mf5p_2Y0l9S_tPpNddiOnHN5be2p5eBbc8Iju1bSIeb85D8nZ78zq-zyZPdw_jy0lWKWB9JriqpEI3khUqFFLUUEuHCBY4t8CEFooLyRxzWinEwikQ705xXo507UpxSM7WvfMufA0YezPzMclobIthiKYotAZeFP-CyYcCLkQC5Rqs0laxw9rMOz-z3dIwMCvhZmrWws1KuAFtkvAUO930D-8zdL-hjeEEXKwBTDoWHjsTK49tEuo7rHrjgv97wjdb9JIe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18050233</pqid></control><display><type>article</type><title>Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scott, Ryan C. ; Schuldiner, Oren ; Neufeld, Thomas P.</creator><creatorcontrib>Scott, Ryan C. ; Schuldiner, Oren ; Neufeld, Thomas P.</creatorcontrib><description>In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2004.07.009</identifier><identifier>PMID: 15296714</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy ; Autophagy-Related Proteins ; Cell Division ; Cell Survival ; Cytoplasm - metabolism ; Drosophila ; Drosophila - physiology ; Drosophila melanogaster ; Drosophila Proteins - physiology ; Fat Body - physiology ; Food Deprivation ; Gene Expression Regulation, Developmental ; Lysosomes - metabolism ; Microscopy, Electron ; Models, Biological ; Phagocytosis ; Phenotype ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol 3-Kinases - physiology ; Protein Kinases - physiology ; Ribosomal Protein S6 Kinases - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Signal Transduction ; Time Factors ; TOR Serine-Threonine Kinases</subject><ispartof>Developmental cell, 2004-08, Vol.7 (2), p.167-178</ispartof><rights>2004 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-325c45ed94ce5e343f0f4dee0a022a0137352341d1d755ee6d503bd522897fd83</citedby><cites>FETCH-LOGICAL-c501t-325c45ed94ce5e343f0f4dee0a022a0137352341d1d755ee6d503bd522897fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S153458070400245X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15296714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Ryan C.</creatorcontrib><creatorcontrib>Schuldiner, Oren</creatorcontrib><creatorcontrib>Neufeld, Thomas P.</creatorcontrib><title>Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Proteins</subject><subject>Cell Division</subject><subject>Cell Survival</subject><subject>Cytoplasm - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - physiology</subject><subject>Fat Body - physiology</subject><subject>Food Deprivation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Lysosomes - metabolism</subject><subject>Microscopy, Electron</subject><subject>Models, Biological</subject><subject>Phagocytosis</subject><subject>Phenotype</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Protein Kinases - physiology</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>TOR Serine-Threonine Kinases</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlOwzAURS0EYv4DhLxil_A8xekGCcooVSAxrC0Tv4CrNC5xUql_j0srsYOVB517n94h5IRBzoAV59Pc4aLCJucAMgedA4y2yD4rdZkxpdh2uishM1WC3iMHMU4hxVgJu2SPKT4qNJP75PE5NEht6-gzfgyN7X1oaajpS2-7xc8re2jdUKGjl0Mf5p_2Y0l9S_tPpNddiOnHN5be2p5eBbc8Iju1bSIeb85D8nZ78zq-zyZPdw_jy0lWKWB9JriqpEI3khUqFFLUUEuHCBY4t8CEFooLyRxzWinEwikQ705xXo507UpxSM7WvfMufA0YezPzMclobIthiKYotAZeFP-CyYcCLkQC5Rqs0laxw9rMOz-z3dIwMCvhZmrWws1KuAFtkvAUO930D-8zdL-hjeEEXKwBTDoWHjsTK49tEuo7rHrjgv97wjdb9JIe</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Scott, Ryan C.</creator><creator>Schuldiner, Oren</creator><creator>Neufeld, Thomas P.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body</title><author>Scott, Ryan C. ; Schuldiner, Oren ; Neufeld, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-325c45ed94ce5e343f0f4dee0a022a0137352341d1d755ee6d503bd522897fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Proteins</topic><topic>Cell Division</topic><topic>Cell Survival</topic><topic>Cytoplasm - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - physiology</topic><topic>Fat Body - physiology</topic><topic>Food Deprivation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Lysosomes - metabolism</topic><topic>Microscopy, Electron</topic><topic>Models, Biological</topic><topic>Phagocytosis</topic><topic>Phenotype</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Protein Kinases - physiology</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>TOR Serine-Threonine Kinases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Ryan C.</creatorcontrib><creatorcontrib>Schuldiner, Oren</creatorcontrib><creatorcontrib>Neufeld, Thomas P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Ryan C.</au><au>Schuldiner, Oren</au><au>Neufeld, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>7</volume><issue>2</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15296714</pmid><doi>10.1016/j.devcel.2004.07.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2004-08, Vol.7 (2), p.167-178
issn 1534-5807
1878-1551
language eng
recordid cdi_proquest_miscellaneous_66770266
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Autophagy
Autophagy-Related Proteins
Cell Division
Cell Survival
Cytoplasm - metabolism
Drosophila
Drosophila - physiology
Drosophila melanogaster
Drosophila Proteins - physiology
Fat Body - physiology
Food Deprivation
Gene Expression Regulation, Developmental
Lysosomes - metabolism
Microscopy, Electron
Models, Biological
Phagocytosis
Phenotype
Phosphatidylinositol 3-Kinases - metabolism
Phosphatidylinositol 3-Kinases - physiology
Protein Kinases - physiology
Ribosomal Protein S6 Kinases - metabolism
Saccharomyces cerevisiae Proteins - physiology
Signal Transduction
Time Factors
TOR Serine-Threonine Kinases
title Role and Regulation of Starvation-Induced Autophagy in the Drosophila Fat Body
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20and%20Regulation%20of%20Starvation-Induced%20Autophagy%20in%20the%20Drosophila%20Fat%20Body&rft.jtitle=Developmental%20cell&rft.au=Scott,%20Ryan%20C.&rft.date=2004-08-01&rft.volume=7&rft.issue=2&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2004.07.009&rft_dat=%3Cproquest_cross%3E66770266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18050233&rft_id=info:pmid/15296714&rft_els_id=S153458070400245X&rfr_iscdi=true