AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae

1 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA 2 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA 3 Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Gua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2004-08, Vol.150 (8), p.2727-2737
Hauptverfasser: Penaloza-Vazquez, Alejandro, Fakhr, Mohamed K, Bailey, Ana M, Bender, Carol L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2737
container_issue 8
container_start_page 2727
container_title Microbiology (Society for General Microbiology)
container_volume 150
creator Penaloza-Vazquez, Alejandro
Fakhr, Mohamed K
Bailey, Ana M
Bender, Carol L
description 1 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA 2 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA 3 Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico Correspondence Carol L. Bender cbender{at}okstate.edu Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa , the response regulator AlgR (AlgR1) is required for transcription of algC and algD , which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD . Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and 54 , the alternative sigma factor encoded by rpoN . The algC promoter from P. syringae FF5 ( PsalgC ) was cloned upstream of a promoterless glucuronidase gene ( uidA ), and the PsalgC–uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 ( algR mutant of P. syringae FF5) and PG4180.K2 ( rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC–uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and 54 are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP–AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syr
doi_str_mv 10.1099/mic.0.27199-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66765599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17734524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-36f4b5fbd1ee191b17f6e214a26d00f2cee25e3da0c7cebbdeaa19bb94fbb72a3</originalsourceid><addsrcrecordid>eNqF0c9v2yAUB3A0tVrSbsddJ19aqQdnD2xMOEZRt1aKtGrqzgjww2WycQZxf_z3I0vUHnsCHh_eV3oQ8oXCgoKU3wZvF7BggkpZwgcyp3XDSwZLOMn7ikMJS8Fm5CylPwD5EuhHMqOcLSVv5Jzcr_ruV-GmYHd-DKnwodB9ty7weRsxpVwrdGiLRx-nHoPFPbhLOLXjMAadivQSfeg0FtvHxevhEzl1uk_4-biek9_fr-_XN-Xm54_b9WpT2ppVu7JqXG24My1FpJIaKlyDjNaaNS2AYxaRcaxaDVZYNKZFrak0RtbOGMF0dU4uD323cfw7YdqpwSeLfa8DjlNSTSMazqV8F1IhqpqzOsPyAG0cU4ro1Db6QccXRUHt550fWgXq_7wVZP_12HgyA7Zv-jjgDC6OQCerexd1sD69ufwfXNIqu6uDe_Ddw5OPqDoMOSuOxo_7UMpBLXMuE9U_MfSYlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17734524</pqid></control><display><type>article</type><title>AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae</title><source>MEDLINE</source><source>PubMed Central</source><creator>Penaloza-Vazquez, Alejandro ; Fakhr, Mohamed K ; Bailey, Ana M ; Bender, Carol L</creator><creatorcontrib>Penaloza-Vazquez, Alejandro ; Fakhr, Mohamed K ; Bailey, Ana M ; Bender, Carol L</creatorcontrib><description>1 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA 2 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA 3 Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico Correspondence Carol L. Bender cbender{at}okstate.edu Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa , the response regulator AlgR (AlgR1) is required for transcription of algC and algD , which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD . Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and 54 , the alternative sigma factor encoded by rpoN . The algC promoter from P. syringae FF5 ( PsalgC ) was cloned upstream of a promoterless glucuronidase gene ( uidA ), and the PsalgC–uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 ( algR mutant of P. syringae FF5) and PG4180.K2 ( rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC–uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and 54 are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP–AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syringae FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of algR is required for systemic movement. Abbreviations: ABS, AlgR-binding sites; CF, cystic fibrosis; GUS, glucuronidase; MBP, maltose-binding protein The GenBank accession number for the sequence reported in this paper is AY575079 . Present address: Dept of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58105, USA. These two authors contributed equally to this work.</description><identifier>ISSN: 1350-0872</identifier><identifier>EISSN: 1465-2080</identifier><identifier>DOI: 10.1099/mic.0.27199-0</identifier><identifier>PMID: 15289569</identifier><language>eng</language><publisher>Reading: Soc General Microbiol</publisher><subject>Amino Acid Sequence ; Bacterial plant pathogens ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriological methods and techniques used in bacteriology ; Bacteriology ; Base Sequence ; Biological and medical sciences ; Cloning, Molecular ; DNA, Bacterial - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli ; Escherichia coli Proteins ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Genes, Bacterial ; Genetic Complementation Test ; Microbiology ; Miscellaneous ; Molecular Sequence Data ; Phytopathology. Animal pests. Plant and forest protection ; Plant Diseases - microbiology ; Promoter Regions, Genetic ; Pseudomonas aeruginosa ; Pseudomonas syringae ; Pseudomonas syringae - genetics ; Pseudomonas syringae - metabolism ; Pseudomonas syringae - pathogenicity ; Pyrus - microbiology ; RNA Polymerase Sigma 54 ; Sequence Homology, Amino Acid ; Sigma Factor - genetics ; Sigma Factor - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Virulence - genetics ; Virulence - physiology</subject><ispartof>Microbiology (Society for General Microbiology), 2004-08, Vol.150 (8), p.2727-2737</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-36f4b5fbd1ee191b17f6e214a26d00f2cee25e3da0c7cebbdeaa19bb94fbb72a3</citedby><cites>FETCH-LOGICAL-c423t-36f4b5fbd1ee191b17f6e214a26d00f2cee25e3da0c7cebbdeaa19bb94fbb72a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16015913$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15289569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penaloza-Vazquez, Alejandro</creatorcontrib><creatorcontrib>Fakhr, Mohamed K</creatorcontrib><creatorcontrib>Bailey, Ana M</creatorcontrib><creatorcontrib>Bender, Carol L</creatorcontrib><title>AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae</title><title>Microbiology (Society for General Microbiology)</title><addtitle>Microbiology</addtitle><description>1 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA 2 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA 3 Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico Correspondence Carol L. Bender cbender{at}okstate.edu Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa , the response regulator AlgR (AlgR1) is required for transcription of algC and algD , which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD . Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and 54 , the alternative sigma factor encoded by rpoN . The algC promoter from P. syringae FF5 ( PsalgC ) was cloned upstream of a promoterless glucuronidase gene ( uidA ), and the PsalgC–uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 ( algR mutant of P. syringae FF5) and PG4180.K2 ( rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC–uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and 54 are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP–AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syringae FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of algR is required for systemic movement. Abbreviations: ABS, AlgR-binding sites; CF, cystic fibrosis; GUS, glucuronidase; MBP, maltose-binding protein The GenBank accession number for the sequence reported in this paper is AY575079 . Present address: Dept of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58105, USA. These two authors contributed equally to this work.</description><subject>Amino Acid Sequence</subject><subject>Bacterial plant pathogens</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriological methods and techniques used in bacteriology</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Genes, Bacterial</subject><subject>Genetic Complementation Test</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant Diseases - microbiology</subject><subject>Promoter Regions, Genetic</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - genetics</subject><subject>Pseudomonas syringae - metabolism</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>Pyrus - microbiology</subject><subject>RNA Polymerase Sigma 54</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sigma Factor - genetics</subject><subject>Sigma Factor - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Virulence - genetics</subject><subject>Virulence - physiology</subject><issn>1350-0872</issn><issn>1465-2080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9v2yAUB3A0tVrSbsddJ19aqQdnD2xMOEZRt1aKtGrqzgjww2WycQZxf_z3I0vUHnsCHh_eV3oQ8oXCgoKU3wZvF7BggkpZwgcyp3XDSwZLOMn7ikMJS8Fm5CylPwD5EuhHMqOcLSVv5Jzcr_ruV-GmYHd-DKnwodB9ty7weRsxpVwrdGiLRx-nHoPFPbhLOLXjMAadivQSfeg0FtvHxevhEzl1uk_4-biek9_fr-_XN-Xm54_b9WpT2ppVu7JqXG24My1FpJIaKlyDjNaaNS2AYxaRcaxaDVZYNKZFrak0RtbOGMF0dU4uD323cfw7YdqpwSeLfa8DjlNSTSMazqV8F1IhqpqzOsPyAG0cU4ro1Db6QccXRUHt550fWgXq_7wVZP_12HgyA7Zv-jjgDC6OQCerexd1sD69ufwfXNIqu6uDe_Ddw5OPqDoMOSuOxo_7UMpBLXMuE9U_MfSYlA</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Penaloza-Vazquez, Alejandro</creator><creator>Fakhr, Mohamed K</creator><creator>Bailey, Ana M</creator><creator>Bender, Carol L</creator><general>Soc General Microbiol</general><general>Society for General Microbiology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae</title><author>Penaloza-Vazquez, Alejandro ; Fakhr, Mohamed K ; Bailey, Ana M ; Bender, Carol L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-36f4b5fbd1ee191b17f6e214a26d00f2cee25e3da0c7cebbdeaa19bb94fbb72a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial plant pathogens</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriological methods and techniques used in bacteriology</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Genes, Bacterial</topic><topic>Genetic Complementation Test</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant Diseases - microbiology</topic><topic>Promoter Regions, Genetic</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - genetics</topic><topic>Pseudomonas syringae - metabolism</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>Pyrus - microbiology</topic><topic>RNA Polymerase Sigma 54</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sigma Factor - genetics</topic><topic>Sigma Factor - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Virulence - genetics</topic><topic>Virulence - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penaloza-Vazquez, Alejandro</creatorcontrib><creatorcontrib>Fakhr, Mohamed K</creatorcontrib><creatorcontrib>Bailey, Ana M</creatorcontrib><creatorcontrib>Bender, Carol L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Microbiology (Society for General Microbiology)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penaloza-Vazquez, Alejandro</au><au>Fakhr, Mohamed K</au><au>Bailey, Ana M</au><au>Bender, Carol L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae</atitle><jtitle>Microbiology (Society for General Microbiology)</jtitle><addtitle>Microbiology</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>150</volume><issue>8</issue><spage>2727</spage><epage>2737</epage><pages>2727-2737</pages><issn>1350-0872</issn><eissn>1465-2080</eissn><abstract>1 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA 2 Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA 3 Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico Correspondence Carol L. Bender cbender{at}okstate.edu Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa , the response regulator AlgR (AlgR1) is required for transcription of algC and algD , which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD . Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and 54 , the alternative sigma factor encoded by rpoN . The algC promoter from P. syringae FF5 ( PsalgC ) was cloned upstream of a promoterless glucuronidase gene ( uidA ), and the PsalgC–uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 ( algR mutant of P. syringae FF5) and PG4180.K2 ( rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC–uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and 54 are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP–AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syringae FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of algR is required for systemic movement. Abbreviations: ABS, AlgR-binding sites; CF, cystic fibrosis; GUS, glucuronidase; MBP, maltose-binding protein The GenBank accession number for the sequence reported in this paper is AY575079 . Present address: Dept of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58105, USA. These two authors contributed equally to this work.</abstract><cop>Reading</cop><pub>Soc General Microbiol</pub><pmid>15289569</pmid><doi>10.1099/mic.0.27199-0</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-0872
ispartof Microbiology (Society for General Microbiology), 2004-08, Vol.150 (8), p.2727-2737
issn 1350-0872
1465-2080
language eng
recordid cdi_proquest_miscellaneous_66765599
source MEDLINE; PubMed Central
subjects Amino Acid Sequence
Bacterial plant pathogens
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriological methods and techniques used in bacteriology
Bacteriology
Base Sequence
Biological and medical sciences
Cloning, Molecular
DNA, Bacterial - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Escherichia coli
Escherichia coli Proteins
Fundamental and applied biological sciences. Psychology
Gene Expression
Genes, Bacterial
Genetic Complementation Test
Microbiology
Miscellaneous
Molecular Sequence Data
Phytopathology. Animal pests. Plant and forest protection
Plant Diseases - microbiology
Promoter Regions, Genetic
Pseudomonas aeruginosa
Pseudomonas syringae
Pseudomonas syringae - genetics
Pseudomonas syringae - metabolism
Pseudomonas syringae - pathogenicity
Pyrus - microbiology
RNA Polymerase Sigma 54
Sequence Homology, Amino Acid
Sigma Factor - genetics
Sigma Factor - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
Virulence - genetics
Virulence - physiology
title AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlgR%20functions%20in%20algC%20expression%20and%20virulence%20in%20Pseudomonas%20syringae%20pv.%20syringae&rft.jtitle=Microbiology%20(Society%20for%20General%20Microbiology)&rft.au=Penaloza-Vazquez,%20Alejandro&rft.date=2004-08-01&rft.volume=150&rft.issue=8&rft.spage=2727&rft.epage=2737&rft.pages=2727-2737&rft.issn=1350-0872&rft.eissn=1465-2080&rft_id=info:doi/10.1099/mic.0.27199-0&rft_dat=%3Cproquest_cross%3E17734524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17734524&rft_id=info:pmid/15289569&rfr_iscdi=true