Human Lymphocytes Interact Directly with CD47 through a Novel Member of the Signal Regulatory Protein (SIRP) Family

Two closely related proteins, signal regulatory protein alpha (SIRPalpha; SHPS-1/CD172) and SIRPbeta, have been described in humans. The existence of a third SIRP protein has been suggested by cDNA sequence only. We show that this third SIRP is a separate gene that is expressed as a protein with uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-08, Vol.173 (4), p.2562-2570
Hauptverfasser: Brooke, Gary, Holbrook, Joanna D, Brown, Marion H, Barclay, A. Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two closely related proteins, signal regulatory protein alpha (SIRPalpha; SHPS-1/CD172) and SIRPbeta, have been described in humans. The existence of a third SIRP protein has been suggested by cDNA sequence only. We show that this third SIRP is a separate gene that is expressed as a protein with unique characteristics from both alpha and beta genes and suggest that this gene should be termed SIRPgamma. We have expressed the extracellular region of SIRPgamma as a soluble protein and have shown that, like SIRPalpha, it binds CD47, but with a lower affinity (K(d), approximately 23 microM) compared with SIRPalpha (K(d), approximately 2 microM). mAbs specific to SIRPgamma show that it was not expressed on myeloid cells, in contrast to SIRPalpha and -beta, being expressed instead on the majority of T cells and a proportion of B cells. The short cytoplasmic tail of SIRPgamma does not contain any known signaling motifs, nor does it contain a characteristic lysine, as with SIRPbeta, that is required for DAP12 interaction. DAP12 coexpression is a requirement for SIRPbeta surface expression, whereas SIRPgamma is expressed in its absence. The SIRPgamma-CD47 interaction may therefore not be capable of bidirectional signaling as with the SIRPalpha-CD47, but, instead, use unidirectional signaling via CD47 only.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.173.4.2562