Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses
We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching p...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2009-01, Vol.9 (2), p.311-318 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | Lab on a chip |
container_volume | 9 |
creator | Kim, Moosung Hwang, David J Jeon, Hojeong Hiromatsu, Kuniaki Grigoropoulos, Costas P |
description | We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing. |
doi_str_mv | 10.1039/b808366e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66750283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66750283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMo7roKfgLJSbxUk6ZtkqMu6x9Y8KCeSzqZLJG2qU0r7LffLrvoaR4zv3nwHiHXnN1zJvRDpZgSRYEnZM4zKRLGlT7901rOyEWM34zxPCvUOZlxzZlMNZsT-PDtpkYKWNfU4oAw-NDSMU5rauimNjEmlYloaeiG4OrRWw8T-esBqTNV78EM07XaUofNECJCaC2d_rCn3VhHjJfkzJlJXB3ngnw9rz6Xr8n6_eVt-bhOQKhiSLgR0hjHQGuXZ1YBKssAU8itdCoFmVmZ5Q5ZVRXCprlTwoLLDKROa2O0WJDbg2_Xh58R41A2Pu6DmRbDGMuikDlLlZjAuwMIfYixR1d2vW9Mvy05K_eFlk-HQlcTenP0HKsG7T94bFDsAN6WcpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66750283</pqid></control><display><type>article</type><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</creator><creatorcontrib>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</creatorcontrib><description>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b808366e</identifier><identifier>PMID: 19107290</identifier><language>eng</language><publisher>England</publisher><subject>Cell Count - methods ; Cell Separation ; Erythrocytes ; Fluorescence ; Glass - chemistry ; Humans ; Lasers ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Refractometry - methods ; Time Factors</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (2), p.311-318</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</citedby><cites>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19107290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Moosung</creatorcontrib><creatorcontrib>Hwang, David J</creatorcontrib><creatorcontrib>Jeon, Hojeong</creatorcontrib><creatorcontrib>Hiromatsu, Kuniaki</creatorcontrib><creatorcontrib>Grigoropoulos, Costas P</creatorcontrib><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</description><subject>Cell Count - methods</subject><subject>Cell Separation</subject><subject>Erythrocytes</subject><subject>Fluorescence</subject><subject>Glass - chemistry</subject><subject>Humans</subject><subject>Lasers</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Refractometry - methods</subject><subject>Time Factors</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE9LxDAQxYMo7roKfgLJSbxUk6ZtkqMu6x9Y8KCeSzqZLJG2qU0r7LffLrvoaR4zv3nwHiHXnN1zJvRDpZgSRYEnZM4zKRLGlT7901rOyEWM34zxPCvUOZlxzZlMNZsT-PDtpkYKWNfU4oAw-NDSMU5rauimNjEmlYloaeiG4OrRWw8T-esBqTNV78EM07XaUofNECJCaC2d_rCn3VhHjJfkzJlJXB3ngnw9rz6Xr8n6_eVt-bhOQKhiSLgR0hjHQGuXZ1YBKssAU8itdCoFmVmZ5Q5ZVRXCprlTwoLLDKROa2O0WJDbg2_Xh58R41A2Pu6DmRbDGMuikDlLlZjAuwMIfYixR1d2vW9Mvy05K_eFlk-HQlcTenP0HKsG7T94bFDsAN6WcpI</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kim, Moosung</creator><creator>Hwang, David J</creator><creator>Jeon, Hojeong</creator><creator>Hiromatsu, Kuniaki</creator><creator>Grigoropoulos, Costas P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><author>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cell Count - methods</topic><topic>Cell Separation</topic><topic>Erythrocytes</topic><topic>Fluorescence</topic><topic>Glass - chemistry</topic><topic>Humans</topic><topic>Lasers</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Refractometry - methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Moosung</creatorcontrib><creatorcontrib>Hwang, David J</creatorcontrib><creatorcontrib>Jeon, Hojeong</creatorcontrib><creatorcontrib>Hiromatsu, Kuniaki</creatorcontrib><creatorcontrib>Grigoropoulos, Costas P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Moosung</au><au>Hwang, David J</au><au>Jeon, Hojeong</au><au>Hiromatsu, Kuniaki</au><au>Grigoropoulos, Costas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>2</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</abstract><cop>England</cop><pmid>19107290</pmid><doi>10.1039/b808366e</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2009-01, Vol.9 (2), p.311-318 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_66750283 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Cell Count - methods Cell Separation Erythrocytes Fluorescence Glass - chemistry Humans Lasers Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Refractometry - methods Time Factors |
title | Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20cell%20detection%20using%20a%20glass-based%20optofluidic%20device%20fabricated%20by%20femtosecond%20laser%20pulses&rft.jtitle=Lab%20on%20a%20chip&rft.au=Kim,%20Moosung&rft.date=2009-01-01&rft.volume=9&rft.issue=2&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b808366e&rft_dat=%3Cproquest_cross%3E66750283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66750283&rft_id=info:pmid/19107290&rfr_iscdi=true |