Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses

We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2009-01, Vol.9 (2), p.311-318
Hauptverfasser: Kim, Moosung, Hwang, David J, Jeon, Hojeong, Hiromatsu, Kuniaki, Grigoropoulos, Costas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 311
container_title Lab on a chip
container_volume 9
creator Kim, Moosung
Hwang, David J
Jeon, Hojeong
Hiromatsu, Kuniaki
Grigoropoulos, Costas P
description We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.
doi_str_mv 10.1039/b808366e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66750283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66750283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</originalsourceid><addsrcrecordid>eNpFkE9LxDAQxYMo7roKfgLJSbxUk6ZtkqMu6x9Y8KCeSzqZLJG2qU0r7LffLrvoaR4zv3nwHiHXnN1zJvRDpZgSRYEnZM4zKRLGlT7901rOyEWM34zxPCvUOZlxzZlMNZsT-PDtpkYKWNfU4oAw-NDSMU5rauimNjEmlYloaeiG4OrRWw8T-esBqTNV78EM07XaUofNECJCaC2d_rCn3VhHjJfkzJlJXB3ngnw9rz6Xr8n6_eVt-bhOQKhiSLgR0hjHQGuXZ1YBKssAU8itdCoFmVmZ5Q5ZVRXCprlTwoLLDKROa2O0WJDbg2_Xh58R41A2Pu6DmRbDGMuikDlLlZjAuwMIfYixR1d2vW9Mvy05K_eFlk-HQlcTenP0HKsG7T94bFDsAN6WcpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66750283</pqid></control><display><type>article</type><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</creator><creatorcontrib>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</creatorcontrib><description>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b808366e</identifier><identifier>PMID: 19107290</identifier><language>eng</language><publisher>England</publisher><subject>Cell Count - methods ; Cell Separation ; Erythrocytes ; Fluorescence ; Glass - chemistry ; Humans ; Lasers ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Refractometry - methods ; Time Factors</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (2), p.311-318</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</citedby><cites>FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19107290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Moosung</creatorcontrib><creatorcontrib>Hwang, David J</creatorcontrib><creatorcontrib>Jeon, Hojeong</creatorcontrib><creatorcontrib>Hiromatsu, Kuniaki</creatorcontrib><creatorcontrib>Grigoropoulos, Costas P</creatorcontrib><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</description><subject>Cell Count - methods</subject><subject>Cell Separation</subject><subject>Erythrocytes</subject><subject>Fluorescence</subject><subject>Glass - chemistry</subject><subject>Humans</subject><subject>Lasers</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Refractometry - methods</subject><subject>Time Factors</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE9LxDAQxYMo7roKfgLJSbxUk6ZtkqMu6x9Y8KCeSzqZLJG2qU0r7LffLrvoaR4zv3nwHiHXnN1zJvRDpZgSRYEnZM4zKRLGlT7901rOyEWM34zxPCvUOZlxzZlMNZsT-PDtpkYKWNfU4oAw-NDSMU5rauimNjEmlYloaeiG4OrRWw8T-esBqTNV78EM07XaUofNECJCaC2d_rCn3VhHjJfkzJlJXB3ngnw9rz6Xr8n6_eVt-bhOQKhiSLgR0hjHQGuXZ1YBKssAU8itdCoFmVmZ5Q5ZVRXCprlTwoLLDKROa2O0WJDbg2_Xh58R41A2Pu6DmRbDGMuikDlLlZjAuwMIfYixR1d2vW9Mvy05K_eFlk-HQlcTenP0HKsG7T94bFDsAN6WcpI</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kim, Moosung</creator><creator>Hwang, David J</creator><creator>Jeon, Hojeong</creator><creator>Hiromatsu, Kuniaki</creator><creator>Grigoropoulos, Costas P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</title><author>Kim, Moosung ; Hwang, David J ; Jeon, Hojeong ; Hiromatsu, Kuniaki ; Grigoropoulos, Costas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1a37aaf0c99f54d8ce8d0ce2c5d7f82c74d745fe0bb63d25f83dcf4ac2f99aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cell Count - methods</topic><topic>Cell Separation</topic><topic>Erythrocytes</topic><topic>Fluorescence</topic><topic>Glass - chemistry</topic><topic>Humans</topic><topic>Lasers</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Refractometry - methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Moosung</creatorcontrib><creatorcontrib>Hwang, David J</creatorcontrib><creatorcontrib>Jeon, Hojeong</creatorcontrib><creatorcontrib>Hiromatsu, Kuniaki</creatorcontrib><creatorcontrib>Grigoropoulos, Costas P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Moosung</au><au>Hwang, David J</au><au>Jeon, Hojeong</au><au>Hiromatsu, Kuniaki</au><au>Grigoropoulos, Costas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>2</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.</abstract><cop>England</cop><pmid>19107290</pmid><doi>10.1039/b808366e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2009-01, Vol.9 (2), p.311-318
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_66750283
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Cell Count - methods
Cell Separation
Erythrocytes
Fluorescence
Glass - chemistry
Humans
Lasers
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Refractometry - methods
Time Factors
title Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20cell%20detection%20using%20a%20glass-based%20optofluidic%20device%20fabricated%20by%20femtosecond%20laser%20pulses&rft.jtitle=Lab%20on%20a%20chip&rft.au=Kim,%20Moosung&rft.date=2009-01-01&rft.volume=9&rft.issue=2&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b808366e&rft_dat=%3Cproquest_cross%3E66750283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66750283&rft_id=info:pmid/19107290&rfr_iscdi=true