Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)
We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chl...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2009-02, Vol.44 (3), p.1022-1031 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1031 |
---|---|
container_issue | 3 |
container_start_page | 1022 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 44 |
creator | Parkinson, James R.C. Chaudhri, Owais B. Kuo, Yu-Ting Field, Benjamin C.T. Herlihy, Amy H. Dhillo, Waljit S. Ghatei, Mohammad A. Bloom, Stephen R. Bell, Jimmy D. |
description | We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus. These data indicate that whilst these related peptides both induce a similar effect on neuronal activity in the brainstem they generate distinct patterns of activation within the hypothalamus. Furthermore, the hypothalamic pattern of signal intensity generated by GLP-1 closely matches that generated by peripheral injection of LiCl, suggesting the anorexigenic effects of GLP-1 may be in part transmitted via nausea circuits. This work provides a framework by which the temporal effects of appetite modulating agents can be recorded simultaneously within hypothalamic and brainstem feeding centres. |
doi_str_mv | 10.1016/j.neuroimage.2008.09.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66750040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811908010434</els_id><sourcerecordid>3244642441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-a68b8a0767b25cca4f008bf5c0956b292f79ac9ce44dd820c1199ec1f14f974b3</originalsourceid><addsrcrecordid>eNqFkt9qFTEQxhdRbK2-ggQEUXCPyf7L5lJrrYUWRfQ6ZLOTsznsJmuSrZ739UGc7TlQ8KZXCcM33wy_-bKMMLphlDXvdxsHS_B2UlvYFJS2Gyo2tOKPslNGRZ2LmheP139d5i1j4iR7FuOOUipY1T7NTlgr2lIUzWn295M1BgK4ZNVIZpUSBBeJN-RugsOi0sneqmS9I9aRNADpgrIuJpiIcj0Z9rNPgxrVtERi_Dj639ZtyQzBzgMEdLBuB_rOAH0vr7_l7B3xf_Yu-cn3y4iuq89o02CXiehh9MH2sE6brAbSQ8J26Em3J5NyW-UgQg5uUE5jFSE4SFaTABEXxhpZwaw7vLm5uPl-9fZ59sSoMcKL43uW_fx88eP8S3799fLq_MN1rquSpVw1bdcqyhveFbXWqjJItjO1RqRNV4jCcKG00FBVfd8WVCNZAZoZVhnBq648y14ffOfgfy0Qk5xs1DCOuLFfomwaXlNa0QeFBS1F2dYcha_-E-78EvAqUbKaNpzzpixQ1R5UOvgYAxg5B0QQ9pJRuQZG7uR9YOQaGEmFxMBg68vjgKWboL9vPCYEBR8PAkBwtxaCjNrCCt4GvIrsvX14yj_Dv9yY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506777632</pqid></control><display><type>article</type><title>Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Parkinson, James R.C. ; Chaudhri, Owais B. ; Kuo, Yu-Ting ; Field, Benjamin C.T. ; Herlihy, Amy H. ; Dhillo, Waljit S. ; Ghatei, Mohammad A. ; Bloom, Stephen R. ; Bell, Jimmy D.</creator><creatorcontrib>Parkinson, James R.C. ; Chaudhri, Owais B. ; Kuo, Yu-Ting ; Field, Benjamin C.T. ; Herlihy, Amy H. ; Dhillo, Waljit S. ; Ghatei, Mohammad A. ; Bloom, Stephen R. ; Bell, Jimmy D.</creatorcontrib><description>We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus. These data indicate that whilst these related peptides both induce a similar effect on neuronal activity in the brainstem they generate distinct patterns of activation within the hypothalamus. Furthermore, the hypothalamic pattern of signal intensity generated by GLP-1 closely matches that generated by peripheral injection of LiCl, suggesting the anorexigenic effects of GLP-1 may be in part transmitted via nausea circuits. This work provides a framework by which the temporal effects of appetite modulating agents can be recorded simultaneously within hypothalamic and brainstem feeding centres.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2008.09.047</identifier><identifier>PMID: 18983926</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Appetite ; Appetite Stimulants - administration & dosage ; Biomedical research ; Brain Mapping - methods ; Brain Stem - drug effects ; Brain Stem - physiology ; Chlorides ; Contrast Media ; Glucagon-Like Peptide 1 - administration & dosage ; Glucagon-like peptide-1 ; Gut peptides ; Hypothalamus ; Hypothalamus - drug effects ; Hypothalamus - physiology ; Image Enhancement - methods ; Injections ; Lithium chloride ; Lithium Chloride - administration & dosage ; Magnetic Resonance Imaging - methods ; Male ; Manganese ; Manganese Compounds ; Mice ; Mice, Inbred C57BL ; Mn2 ; MRI ; Nerve Net - drug effects ; Nerve Net - physiology ; Neurons - physiology ; NMR ; Nuclear magnetic resonance ; Obesity ; Oxyntomodulin ; Oxyntomodulin - administration & dosage ; Peptides ; Proglucagon ; Rodents ; Signal transduction ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-02, Vol.44 (3), p.1022-1031</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Feb 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-a68b8a0767b25cca4f008bf5c0956b292f79ac9ce44dd820c1199ec1f14f974b3</citedby><cites>FETCH-LOGICAL-c431t-a68b8a0767b25cca4f008bf5c0956b292f79ac9ce44dd820c1199ec1f14f974b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811908010434$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18983926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parkinson, James R.C.</creatorcontrib><creatorcontrib>Chaudhri, Owais B.</creatorcontrib><creatorcontrib>Kuo, Yu-Ting</creatorcontrib><creatorcontrib>Field, Benjamin C.T.</creatorcontrib><creatorcontrib>Herlihy, Amy H.</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Ghatei, Mohammad A.</creatorcontrib><creatorcontrib>Bloom, Stephen R.</creatorcontrib><creatorcontrib>Bell, Jimmy D.</creatorcontrib><title>Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus. These data indicate that whilst these related peptides both induce a similar effect on neuronal activity in the brainstem they generate distinct patterns of activation within the hypothalamus. Furthermore, the hypothalamic pattern of signal intensity generated by GLP-1 closely matches that generated by peripheral injection of LiCl, suggesting the anorexigenic effects of GLP-1 may be in part transmitted via nausea circuits. This work provides a framework by which the temporal effects of appetite modulating agents can be recorded simultaneously within hypothalamic and brainstem feeding centres.</description><subject>Animals</subject><subject>Appetite</subject><subject>Appetite Stimulants - administration & dosage</subject><subject>Biomedical research</subject><subject>Brain Mapping - methods</subject><subject>Brain Stem - drug effects</subject><subject>Brain Stem - physiology</subject><subject>Chlorides</subject><subject>Contrast Media</subject><subject>Glucagon-Like Peptide 1 - administration & dosage</subject><subject>Glucagon-like peptide-1</subject><subject>Gut peptides</subject><subject>Hypothalamus</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - physiology</subject><subject>Image Enhancement - methods</subject><subject>Injections</subject><subject>Lithium chloride</subject><subject>Lithium Chloride - administration & dosage</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Manganese</subject><subject>Manganese Compounds</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mn2</subject><subject>MRI</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Obesity</subject><subject>Oxyntomodulin</subject><subject>Oxyntomodulin - administration & dosage</subject><subject>Peptides</subject><subject>Proglucagon</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt9qFTEQxhdRbK2-ggQEUXCPyf7L5lJrrYUWRfQ6ZLOTsznsJmuSrZ739UGc7TlQ8KZXCcM33wy_-bKMMLphlDXvdxsHS_B2UlvYFJS2Gyo2tOKPslNGRZ2LmheP139d5i1j4iR7FuOOUipY1T7NTlgr2lIUzWn295M1BgK4ZNVIZpUSBBeJN-RugsOi0sneqmS9I9aRNADpgrIuJpiIcj0Z9rNPgxrVtERi_Dj639ZtyQzBzgMEdLBuB_rOAH0vr7_l7B3xf_Yu-cn3y4iuq89o02CXiehh9MH2sE6brAbSQ8J26Em3J5NyW-UgQg5uUE5jFSE4SFaTABEXxhpZwaw7vLm5uPl-9fZ59sSoMcKL43uW_fx88eP8S3799fLq_MN1rquSpVw1bdcqyhveFbXWqjJItjO1RqRNV4jCcKG00FBVfd8WVCNZAZoZVhnBq648y14ffOfgfy0Qk5xs1DCOuLFfomwaXlNa0QeFBS1F2dYcha_-E-78EvAqUbKaNpzzpixQ1R5UOvgYAxg5B0QQ9pJRuQZG7uR9YOQaGEmFxMBg68vjgKWboL9vPCYEBR8PAkBwtxaCjNrCCt4GvIrsvX14yj_Dv9yY</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Parkinson, James R.C.</creator><creator>Chaudhri, Owais B.</creator><creator>Kuo, Yu-Ting</creator><creator>Field, Benjamin C.T.</creator><creator>Herlihy, Amy H.</creator><creator>Dhillo, Waljit S.</creator><creator>Ghatei, Mohammad A.</creator><creator>Bloom, Stephen R.</creator><creator>Bell, Jimmy D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)</title><author>Parkinson, James R.C. ; Chaudhri, Owais B. ; Kuo, Yu-Ting ; Field, Benjamin C.T. ; Herlihy, Amy H. ; Dhillo, Waljit S. ; Ghatei, Mohammad A. ; Bloom, Stephen R. ; Bell, Jimmy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-a68b8a0767b25cca4f008bf5c0956b292f79ac9ce44dd820c1199ec1f14f974b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Appetite</topic><topic>Appetite Stimulants - administration & dosage</topic><topic>Biomedical research</topic><topic>Brain Mapping - methods</topic><topic>Brain Stem - drug effects</topic><topic>Brain Stem - physiology</topic><topic>Chlorides</topic><topic>Contrast Media</topic><topic>Glucagon-Like Peptide 1 - administration & dosage</topic><topic>Glucagon-like peptide-1</topic><topic>Gut peptides</topic><topic>Hypothalamus</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - physiology</topic><topic>Image Enhancement - methods</topic><topic>Injections</topic><topic>Lithium chloride</topic><topic>Lithium Chloride - administration & dosage</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Manganese</topic><topic>Manganese Compounds</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mn2</topic><topic>MRI</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Obesity</topic><topic>Oxyntomodulin</topic><topic>Oxyntomodulin - administration & dosage</topic><topic>Peptides</topic><topic>Proglucagon</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parkinson, James R.C.</creatorcontrib><creatorcontrib>Chaudhri, Owais B.</creatorcontrib><creatorcontrib>Kuo, Yu-Ting</creatorcontrib><creatorcontrib>Field, Benjamin C.T.</creatorcontrib><creatorcontrib>Herlihy, Amy H.</creatorcontrib><creatorcontrib>Dhillo, Waljit S.</creatorcontrib><creatorcontrib>Ghatei, Mohammad A.</creatorcontrib><creatorcontrib>Bloom, Stephen R.</creatorcontrib><creatorcontrib>Bell, Jimmy D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parkinson, James R.C.</au><au>Chaudhri, Owais B.</au><au>Kuo, Yu-Ting</au><au>Field, Benjamin C.T.</au><au>Herlihy, Amy H.</au><au>Dhillo, Waljit S.</au><au>Ghatei, Mohammad A.</au><au>Bloom, Stephen R.</au><au>Bell, Jimmy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI)</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>44</volume><issue>3</issue><spage>1022</spage><epage>1031</epage><pages>1022-1031</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus. These data indicate that whilst these related peptides both induce a similar effect on neuronal activity in the brainstem they generate distinct patterns of activation within the hypothalamus. Furthermore, the hypothalamic pattern of signal intensity generated by GLP-1 closely matches that generated by peripheral injection of LiCl, suggesting the anorexigenic effects of GLP-1 may be in part transmitted via nausea circuits. This work provides a framework by which the temporal effects of appetite modulating agents can be recorded simultaneously within hypothalamic and brainstem feeding centres.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18983926</pmid><doi>10.1016/j.neuroimage.2008.09.047</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2009-02, Vol.44 (3), p.1022-1031 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_66750040 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Appetite Appetite Stimulants - administration & dosage Biomedical research Brain Mapping - methods Brain Stem - drug effects Brain Stem - physiology Chlorides Contrast Media Glucagon-Like Peptide 1 - administration & dosage Glucagon-like peptide-1 Gut peptides Hypothalamus Hypothalamus - drug effects Hypothalamus - physiology Image Enhancement - methods Injections Lithium chloride Lithium Chloride - administration & dosage Magnetic Resonance Imaging - methods Male Manganese Manganese Compounds Mice Mice, Inbred C57BL Mn2 MRI Nerve Net - drug effects Nerve Net - physiology Neurons - physiology NMR Nuclear magnetic resonance Obesity Oxyntomodulin Oxyntomodulin - administration & dosage Peptides Proglucagon Rodents Signal transduction Studies |
title | Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20patterns%20of%20neuronal%20activation%20in%20the%20brainstem%20and%20hypothalamus%20following%20peripheral%20injection%20of%20GLP-1,%20oxyntomodulin%20and%20lithium%20chloride%20in%20mice%20detected%20by%20manganese-enhanced%20magnetic%20resonance%20imaging%20(MEMRI)&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Parkinson,%20James%20R.C.&rft.date=2009-02-01&rft.volume=44&rft.issue=3&rft.spage=1022&rft.epage=1031&rft.pages=1022-1031&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2008.09.047&rft_dat=%3Cproquest_cross%3E3244642441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506777632&rft_id=info:pmid/18983926&rft_els_id=S1053811908010434&rfr_iscdi=true |