Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection

Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-07, Vol.101 (30), p.11099-11104
Hauptverfasser: Norman, Kara L., Hirasawa, Kensuke, Yang, An-Dao, Shields, Michael A., Patrick W. K. Lee, Joklik, Wolfgang K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11104
container_issue 30
container_start_page 11099
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Norman, Kara L.
Hirasawa, Kensuke
Yang, An-Dao
Shields, Michael A.
Patrick W. K. Lee
Joklik, Wolfgang K.
description Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In this study, we investigate which elements downstream of Ras are important in reovirus infection. By using a panel of NIH 3T3 cells transformed with activated Ras mutated in the effector-binding domain, we found that only the RasV12G37 mutant, which was unable to signal to Raf or phosphatidylinositol 3-kinase but retained signaling capability to guanine nucleotide-exchange factors (GEFs) for the small G protein, Ral (known as RalGEFs), was permissive to reovirus. Expression of the activated mutant of the RalGEF, Rlf, also allowed reovirus replication. Specific inhibition of the Ral pathway by using dominant-negative RalA rendered normally permissive H-Ras cells (cells expressing activated Ras) resistant to reovirus. To further identify elements downstream of RalGEF that promote reovirus infection, we used chemical inhibitors of the downstream signaling elements p38 and JNK. We found that reovirus infection was blocked in the presence of the p38 inhibitor but not the JNK inhibitor. Together, these results implicate a Ras/RalGEF/p38 pathway in the regulation of reovirus replication and oncolysis.
doi_str_mv 10.1073/pnas.0404310101
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66749049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372859</jstor_id><sourcerecordid>3372859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-9a31eecbbfdb66ed0651848970e657d282971b335779deddb147d2eaa588bc653</originalsourceid><addsrcrecordid>eNqFks2LEzEYxoMobl09exEJHgQPs30z-ZhE8CB1v2Bhl7KeQ2bmHTtlOqmTTLX_vSktrXpZcggkv-chz_uEkLcMLhgUfLruXbgAAYIzSOsZmTAwLFPCwHMyAciLTItcnJFXISwBwEgNL8kZk7nioPSENHP0m3YYA73vK99tQxs-08cF0rkL07nrri-vpmuu6YOLi19uS7-1VXQRA73xIdIZdh19wGHVhtBusMcQaPT06HnbN1jF1vevyYvGdQHfHPZz8v3q8nF2k93dX9_Ovt5llTR5zIzjDLEqy6YulcIalGRaaFMAKlnUuc5NwUrOZVGYGuu6ZCKdonNS67JSkp-TL3vf9ViusK6wj4Pr7HpoV27YWu9a--9N3y7sD7-xEnghVNJ_POgH_3PEEG2KVqWUrkc_BqtUkUYrzJMg08AE4yKBH_4Dl34c-jQEmwPjXCvQCZruoWrwIQzYHF_MwO6Ktrui7anopHj_d9ATf2g2AfQA7JQnO2Z5sky_ZJfh0xOIbcaui_g7Jvbdnl2G6IcjzHmRa2n4H2y-xqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201338608</pqid></control><display><type>article</type><title>Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Norman, Kara L. ; Hirasawa, Kensuke ; Yang, An-Dao ; Shields, Michael A. ; Patrick W. K. Lee ; Joklik, Wolfgang K.</creator><creatorcontrib>Norman, Kara L. ; Hirasawa, Kensuke ; Yang, An-Dao ; Shields, Michael A. ; Patrick W. K. Lee ; Joklik, Wolfgang K.</creatorcontrib><description>Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In this study, we investigate which elements downstream of Ras are important in reovirus infection. By using a panel of NIH 3T3 cells transformed with activated Ras mutated in the effector-binding domain, we found that only the RasV12G37 mutant, which was unable to signal to Raf or phosphatidylinositol 3-kinase but retained signaling capability to guanine nucleotide-exchange factors (GEFs) for the small G protein, Ral (known as RalGEFs), was permissive to reovirus. Expression of the activated mutant of the RalGEF, Rlf, also allowed reovirus replication. Specific inhibition of the Ral pathway by using dominant-negative RalA rendered normally permissive H-Ras cells (cells expressing activated Ras) resistant to reovirus. To further identify elements downstream of RalGEF that promote reovirus infection, we used chemical inhibitors of the downstream signaling elements p38 and JNK. We found that reovirus infection was blocked in the presence of the p38 inhibitor but not the JNK inhibitor. Together, these results implicate a Ras/RalGEF/p38 pathway in the regulation of reovirus replication and oncolysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0404310101</identifier><identifier>PMID: 15263068</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3T3 Cells ; Animals ; Biological Sciences ; Cancer ; Cell lines ; DNA, Viral - genetics ; GTP Phosphohydrolases - metabolism ; Infections ; L Cells ; Medical research ; Medical treatment ; Mice ; Mitogen-Activated Protein Kinases - metabolism ; NIH 3T3 cells ; Oncology ; p38 Mitogen-Activated Protein Kinases ; Permissiveness ; Protein synthesis ; ral Guanine Nucleotide Exchange Factor - metabolism ; ras Proteins - metabolism ; Reoviridae ; Reoviridae - genetics ; Reoviridae - pathogenicity ; Reoviridae - physiology ; Reoviridae infections ; Reoviridae Infections - physiopathology ; Reovirus ; Reverse Transcriptase Polymerase Chain Reaction ; RNA ; Signal Transduction - physiology ; Transfection ; Virus Replication ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-07, Vol.101 (30), p.11099-11104</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 27, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-9a31eecbbfdb66ed0651848970e657d282971b335779deddb147d2eaa588bc653</citedby><cites>FETCH-LOGICAL-c592t-9a31eecbbfdb66ed0651848970e657d282971b335779deddb147d2eaa588bc653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/30.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15263068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norman, Kara L.</creatorcontrib><creatorcontrib>Hirasawa, Kensuke</creatorcontrib><creatorcontrib>Yang, An-Dao</creatorcontrib><creatorcontrib>Shields, Michael A.</creatorcontrib><creatorcontrib>Patrick W. K. Lee</creatorcontrib><creatorcontrib>Joklik, Wolfgang K.</creatorcontrib><title>Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In this study, we investigate which elements downstream of Ras are important in reovirus infection. By using a panel of NIH 3T3 cells transformed with activated Ras mutated in the effector-binding domain, we found that only the RasV12G37 mutant, which was unable to signal to Raf or phosphatidylinositol 3-kinase but retained signaling capability to guanine nucleotide-exchange factors (GEFs) for the small G protein, Ral (known as RalGEFs), was permissive to reovirus. Expression of the activated mutant of the RalGEF, Rlf, also allowed reovirus replication. Specific inhibition of the Ral pathway by using dominant-negative RalA rendered normally permissive H-Ras cells (cells expressing activated Ras) resistant to reovirus. To further identify elements downstream of RalGEF that promote reovirus infection, we used chemical inhibitors of the downstream signaling elements p38 and JNK. We found that reovirus infection was blocked in the presence of the p38 inhibitor but not the JNK inhibitor. Together, these results implicate a Ras/RalGEF/p38 pathway in the regulation of reovirus replication and oncolysis.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell lines</subject><subject>DNA, Viral - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Infections</subject><subject>L Cells</subject><subject>Medical research</subject><subject>Medical treatment</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>NIH 3T3 cells</subject><subject>Oncology</subject><subject>p38 Mitogen-Activated Protein Kinases</subject><subject>Permissiveness</subject><subject>Protein synthesis</subject><subject>ral Guanine Nucleotide Exchange Factor - metabolism</subject><subject>ras Proteins - metabolism</subject><subject>Reoviridae</subject><subject>Reoviridae - genetics</subject><subject>Reoviridae - pathogenicity</subject><subject>Reoviridae - physiology</subject><subject>Reoviridae infections</subject><subject>Reoviridae Infections - physiopathology</subject><subject>Reovirus</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA</subject><subject>Signal Transduction - physiology</subject><subject>Transfection</subject><subject>Virus Replication</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2LEzEYxoMobl09exEJHgQPs30z-ZhE8CB1v2Bhl7KeQ2bmHTtlOqmTTLX_vSktrXpZcggkv-chz_uEkLcMLhgUfLruXbgAAYIzSOsZmTAwLFPCwHMyAciLTItcnJFXISwBwEgNL8kZk7nioPSENHP0m3YYA73vK99tQxs-08cF0rkL07nrri-vpmuu6YOLi19uS7-1VXQRA73xIdIZdh19wGHVhtBusMcQaPT06HnbN1jF1vevyYvGdQHfHPZz8v3q8nF2k93dX9_Ovt5llTR5zIzjDLEqy6YulcIalGRaaFMAKlnUuc5NwUrOZVGYGuu6ZCKdonNS67JSkp-TL3vf9ViusK6wj4Pr7HpoV27YWu9a--9N3y7sD7-xEnghVNJ_POgH_3PEEG2KVqWUrkc_BqtUkUYrzJMg08AE4yKBH_4Dl34c-jQEmwPjXCvQCZruoWrwIQzYHF_MwO6Ktrui7anopHj_d9ATf2g2AfQA7JQnO2Z5sky_ZJfh0xOIbcaui_g7Jvbdnl2G6IcjzHmRa2n4H2y-xqg</recordid><startdate>20040727</startdate><enddate>20040727</enddate><creator>Norman, Kara L.</creator><creator>Hirasawa, Kensuke</creator><creator>Yang, An-Dao</creator><creator>Shields, Michael A.</creator><creator>Patrick W. K. Lee</creator><creator>Joklik, Wolfgang K.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040727</creationdate><title>Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection</title><author>Norman, Kara L. ; Hirasawa, Kensuke ; Yang, An-Dao ; Shields, Michael A. ; Patrick W. K. Lee ; Joklik, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-9a31eecbbfdb66ed0651848970e657d282971b335779deddb147d2eaa588bc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell lines</topic><topic>DNA, Viral - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Infections</topic><topic>L Cells</topic><topic>Medical research</topic><topic>Medical treatment</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>NIH 3T3 cells</topic><topic>Oncology</topic><topic>p38 Mitogen-Activated Protein Kinases</topic><topic>Permissiveness</topic><topic>Protein synthesis</topic><topic>ral Guanine Nucleotide Exchange Factor - metabolism</topic><topic>ras Proteins - metabolism</topic><topic>Reoviridae</topic><topic>Reoviridae - genetics</topic><topic>Reoviridae - pathogenicity</topic><topic>Reoviridae - physiology</topic><topic>Reoviridae infections</topic><topic>Reoviridae Infections - physiopathology</topic><topic>Reovirus</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA</topic><topic>Signal Transduction - physiology</topic><topic>Transfection</topic><topic>Virus Replication</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norman, Kara L.</creatorcontrib><creatorcontrib>Hirasawa, Kensuke</creatorcontrib><creatorcontrib>Yang, An-Dao</creatorcontrib><creatorcontrib>Shields, Michael A.</creatorcontrib><creatorcontrib>Patrick W. K. Lee</creatorcontrib><creatorcontrib>Joklik, Wolfgang K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norman, Kara L.</au><au>Hirasawa, Kensuke</au><au>Yang, An-Dao</au><au>Shields, Michael A.</au><au>Patrick W. K. Lee</au><au>Joklik, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-07-27</date><risdate>2004</risdate><volume>101</volume><issue>30</issue><spage>11099</spage><epage>11104</epage><pages>11099-11104</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Reovirus is a benign human virus that was recently found to have oncolytic properties and is currently in clinical trials as a potential cancer therapy. We have previously demonstrated that activation of Ras signaling, a common event in cancer, renders cells susceptible to reovirus oncolysis. In this study, we investigate which elements downstream of Ras are important in reovirus infection. By using a panel of NIH 3T3 cells transformed with activated Ras mutated in the effector-binding domain, we found that only the RasV12G37 mutant, which was unable to signal to Raf or phosphatidylinositol 3-kinase but retained signaling capability to guanine nucleotide-exchange factors (GEFs) for the small G protein, Ral (known as RalGEFs), was permissive to reovirus. Expression of the activated mutant of the RalGEF, Rlf, also allowed reovirus replication. Specific inhibition of the Ral pathway by using dominant-negative RalA rendered normally permissive H-Ras cells (cells expressing activated Ras) resistant to reovirus. To further identify elements downstream of RalGEF that promote reovirus infection, we used chemical inhibitors of the downstream signaling elements p38 and JNK. We found that reovirus infection was blocked in the presence of the p38 inhibitor but not the JNK inhibitor. Together, these results implicate a Ras/RalGEF/p38 pathway in the regulation of reovirus replication and oncolysis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15263068</pmid><doi>10.1073/pnas.0404310101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-07, Vol.101 (30), p.11099-11104
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_66749049
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3T3 Cells
Animals
Biological Sciences
Cancer
Cell lines
DNA, Viral - genetics
GTP Phosphohydrolases - metabolism
Infections
L Cells
Medical research
Medical treatment
Mice
Mitogen-Activated Protein Kinases - metabolism
NIH 3T3 cells
Oncology
p38 Mitogen-Activated Protein Kinases
Permissiveness
Protein synthesis
ral Guanine Nucleotide Exchange Factor - metabolism
ras Proteins - metabolism
Reoviridae
Reoviridae - genetics
Reoviridae - pathogenicity
Reoviridae - physiology
Reoviridae infections
Reoviridae Infections - physiopathology
Reovirus
Reverse Transcriptase Polymerase Chain Reaction
RNA
Signal Transduction - physiology
Transfection
Virus Replication
Viruses
title Reovirus Oncolysis: The Ras/RalGEF/p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reovirus%20Oncolysis:%20The%20Ras/RalGEF/p38%20Pathway%20Dictates%20Host%20Cell%20Permissiveness%20to%20Reovirus%20Infection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Norman,%20Kara%20L.&rft.date=2004-07-27&rft.volume=101&rft.issue=30&rft.spage=11099&rft.epage=11104&rft.pages=11099-11104&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0404310101&rft_dat=%3Cjstor_proqu%3E3372859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201338608&rft_id=info:pmid/15263068&rft_jstor_id=3372859&rfr_iscdi=true