Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages
The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specificati...
Gespeichert in:
Veröffentlicht in: | Genesis (New York, N.Y. : 2000) N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 3 |
container_start_page | 194 |
container_title | Genesis (New York, N.Y. : 2000) |
container_volume | 39 |
creator | Wikramanayake, Athula H. Peterson, Robert Chen, Jing Huang, Ling Bince, Joanna M. McClay, David R. Klein, William H. |
description | The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/gene.20045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66747342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66747342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEoqWw4QGQVyyQUvxvz5KW6YBUDRICtTvLcW5SQ-JM7QQ6T4XEg_BMeCZT2MHK177fOcfSKYrnBJ8SjOnrFgKcUoy5eFAcE0FluZD6-uH9LPj1UfEkpS8YY6EpfVwc5YWmisvj4sd6ch3YiH79LJ0dIfhQ1rCBUEMY0VUYNUq-DbbzoUU-oG_Qwmg75KDrEhoaNN4AyvpuixJYNEV3kynoq7gdUIR26rJpQq1NY9zNfgjIhhrVvmkg5gw_v2WnnDnUEPv9voe0vxyiUM4H20J6WjxqbJfg2eE8KT5fLD-dvysvP6zen7-5LB1bcFE67FgDbKEtt7zCRBFFG6obRgjAohaiAlnzha6AVY5wqioMFdHAJFFOkIadFC9n300cbidIo-l92v3EBhimZKRUXDFO_wsSjaUilGTw1Qy6OKQUoTGb6Hsbt4Zgs-vR7Ho0-x4z_OLgOlU91H_RQ3EZIDPw3Xew_YeVWS3Xy3vTctb4NMLdH42NX41UTAlztV4ZKd5-XJ_pM6PZb-GCvA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18067121</pqid></control><display><type>article</type><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</creator><creatorcontrib>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</creatorcontrib><description>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 1526-954X</identifier><identifier>EISSN: 1526-968X</identifier><identifier>DOI: 10.1002/gene.20045</identifier><identifier>PMID: 15282746</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; beta Catenin ; Blotting, Northern ; Cell Differentiation - physiology ; Cell Lineage - physiology ; Cell Nucleus - metabolism ; Cytoskeletal Proteins - metabolism ; differentiation ; DNA Primers ; embryo ; Endoderm - physiology ; endomesoderm ; Fluorescent Antibody Technique ; Gastrula - metabolism ; gastrulation ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; In Situ Hybridization ; Mesoderm - physiology ; Microinjections ; Oligonucleotides, Antisense ; Plasmids - genetics ; primary mesenchyme cells ; Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; sea urchin ; Sea Urchins - embryology ; Sea Urchins - metabolism ; Signal Transduction - physiology ; Strongylocentrotus purpuratus ; Trans-Activators - metabolism ; Wnt Proteins ; Wnt8 ; Zebrafish Proteins</subject><ispartof>Genesis (New York, N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</citedby><cites>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgene.20045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgene.20045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15282746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wikramanayake, Athula H.</creatorcontrib><creatorcontrib>Peterson, Robert</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Bince, Joanna M.</creatorcontrib><creatorcontrib>McClay, David R.</creatorcontrib><creatorcontrib>Klein, William H.</creatorcontrib><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><title>Genesis (New York, N.Y. : 2000)</title><addtitle>Genesis</addtitle><description>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>beta Catenin</subject><subject>Blotting, Northern</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Lineage - physiology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>differentiation</subject><subject>DNA Primers</subject><subject>embryo</subject><subject>Endoderm - physiology</subject><subject>endomesoderm</subject><subject>Fluorescent Antibody Technique</subject><subject>Gastrula - metabolism</subject><subject>gastrulation</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>In Situ Hybridization</subject><subject>Mesoderm - physiology</subject><subject>Microinjections</subject><subject>Oligonucleotides, Antisense</subject><subject>Plasmids - genetics</subject><subject>primary mesenchyme cells</subject><subject>Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>sea urchin</subject><subject>Sea Urchins - embryology</subject><subject>Sea Urchins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Strongylocentrotus purpuratus</subject><subject>Trans-Activators - metabolism</subject><subject>Wnt Proteins</subject><subject>Wnt8</subject><subject>Zebrafish Proteins</subject><issn>1526-954X</issn><issn>1526-968X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEoqWw4QGQVyyQUvxvz5KW6YBUDRICtTvLcW5SQ-JM7QQ6T4XEg_BMeCZT2MHK177fOcfSKYrnBJ8SjOnrFgKcUoy5eFAcE0FluZD6-uH9LPj1UfEkpS8YY6EpfVwc5YWmisvj4sd6ch3YiH79LJ0dIfhQ1rCBUEMY0VUYNUq-DbbzoUU-oG_Qwmg75KDrEhoaNN4AyvpuixJYNEV3kynoq7gdUIR26rJpQq1NY9zNfgjIhhrVvmkg5gw_v2WnnDnUEPv9voe0vxyiUM4H20J6WjxqbJfg2eE8KT5fLD-dvysvP6zen7-5LB1bcFE67FgDbKEtt7zCRBFFG6obRgjAohaiAlnzha6AVY5wqioMFdHAJFFOkIadFC9n300cbidIo-l92v3EBhimZKRUXDFO_wsSjaUilGTw1Qy6OKQUoTGb6Hsbt4Zgs-vR7Ho0-x4z_OLgOlU91H_RQ3EZIDPw3Xew_YeVWS3Xy3vTctb4NMLdH42NX41UTAlztV4ZKd5-XJ_pM6PZb-GCvA4</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Wikramanayake, Athula H.</creator><creator>Peterson, Robert</creator><creator>Chen, Jing</creator><creator>Huang, Ling</creator><creator>Bince, Joanna M.</creator><creator>McClay, David R.</creator><creator>Klein, William H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><author>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>beta Catenin</topic><topic>Blotting, Northern</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Lineage - physiology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>differentiation</topic><topic>DNA Primers</topic><topic>embryo</topic><topic>Endoderm - physiology</topic><topic>endomesoderm</topic><topic>Fluorescent Antibody Technique</topic><topic>Gastrula - metabolism</topic><topic>gastrulation</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>In Situ Hybridization</topic><topic>Mesoderm - physiology</topic><topic>Microinjections</topic><topic>Oligonucleotides, Antisense</topic><topic>Plasmids - genetics</topic><topic>primary mesenchyme cells</topic><topic>Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>sea urchin</topic><topic>Sea Urchins - embryology</topic><topic>Sea Urchins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Strongylocentrotus purpuratus</topic><topic>Trans-Activators - metabolism</topic><topic>Wnt Proteins</topic><topic>Wnt8</topic><topic>Zebrafish Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wikramanayake, Athula H.</creatorcontrib><creatorcontrib>Peterson, Robert</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Bince, Joanna M.</creatorcontrib><creatorcontrib>McClay, David R.</creatorcontrib><creatorcontrib>Klein, William H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genesis (New York, N.Y. : 2000)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wikramanayake, Athula H.</au><au>Peterson, Robert</au><au>Chen, Jing</au><au>Huang, Ling</au><au>Bince, Joanna M.</au><au>McClay, David R.</au><au>Klein, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</atitle><jtitle>Genesis (New York, N.Y. : 2000)</jtitle><addtitle>Genesis</addtitle><date>2004-07</date><risdate>2004</risdate><volume>39</volume><issue>3</issue><spage>194</spage><epage>205</epage><pages>194-205</pages><issn>1526-954X</issn><eissn>1526-968X</eissn><abstract>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15282746</pmid><doi>10.1002/gene.20045</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-954X |
ispartof | Genesis (New York, N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205 |
issn | 1526-954X 1526-968X |
language | eng |
recordid | cdi_proquest_miscellaneous_66747342 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals beta Catenin Blotting, Northern Cell Differentiation - physiology Cell Lineage - physiology Cell Nucleus - metabolism Cytoskeletal Proteins - metabolism differentiation DNA Primers embryo Endoderm - physiology endomesoderm Fluorescent Antibody Technique Gastrula - metabolism gastrulation Gene Expression Profiling Gene Expression Regulation, Developmental In Situ Hybridization Mesoderm - physiology Microinjections Oligonucleotides, Antisense Plasmids - genetics primary mesenchyme cells Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction sea urchin Sea Urchins - embryology Sea Urchins - metabolism Signal Transduction - physiology Strongylocentrotus purpuratus Trans-Activators - metabolism Wnt Proteins Wnt8 Zebrafish Proteins |
title | Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20%CE%B2-catenin-dependent%20Wnt8%20signaling%20in%20vegetal%20cells%20of%20the%20early%20sea%20urchin%20embryo%20regulates%20gastrulation%20and%20differentiation%20of%20endoderm%20and%20mesodermal%20cell%20lineages&rft.jtitle=Genesis%20(New%20York,%20N.Y.%20:%202000)&rft.au=Wikramanayake,%20Athula%20H.&rft.date=2004-07&rft.volume=39&rft.issue=3&rft.spage=194&rft.epage=205&rft.pages=194-205&rft.issn=1526-954X&rft.eissn=1526-968X&rft_id=info:doi/10.1002/gene.20045&rft_dat=%3Cproquest_cross%3E66747342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18067121&rft_id=info:pmid/15282746&rfr_iscdi=true |