Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages

The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genesis (New York, N.Y. : 2000) N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205
Hauptverfasser: Wikramanayake, Athula H., Peterson, Robert, Chen, Jing, Huang, Ling, Bince, Joanna M., McClay, David R., Klein, William H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 3
container_start_page 194
container_title Genesis (New York, N.Y. : 2000)
container_volume 39
creator Wikramanayake, Athula H.
Peterson, Robert
Chen, Jing
Huang, Ling
Bince, Joanna M.
McClay, David R.
Klein, William H.
description The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/gene.20045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66747342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66747342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEoqWw4QGQVyyQUvxvz5KW6YBUDRICtTvLcW5SQ-JM7QQ6T4XEg_BMeCZT2MHK177fOcfSKYrnBJ8SjOnrFgKcUoy5eFAcE0FluZD6-uH9LPj1UfEkpS8YY6EpfVwc5YWmisvj4sd6ch3YiH79LJ0dIfhQ1rCBUEMY0VUYNUq-DbbzoUU-oG_Qwmg75KDrEhoaNN4AyvpuixJYNEV3kynoq7gdUIR26rJpQq1NY9zNfgjIhhrVvmkg5gw_v2WnnDnUEPv9voe0vxyiUM4H20J6WjxqbJfg2eE8KT5fLD-dvysvP6zen7-5LB1bcFE67FgDbKEtt7zCRBFFG6obRgjAohaiAlnzha6AVY5wqioMFdHAJFFOkIadFC9n300cbidIo-l92v3EBhimZKRUXDFO_wsSjaUilGTw1Qy6OKQUoTGb6Hsbt4Zgs-vR7Ho0-x4z_OLgOlU91H_RQ3EZIDPw3Xew_YeVWS3Xy3vTctb4NMLdH42NX41UTAlztV4ZKd5-XJ_pM6PZb-GCvA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18067121</pqid></control><display><type>article</type><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</creator><creatorcontrib>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</creatorcontrib><description>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 1526-954X</identifier><identifier>EISSN: 1526-968X</identifier><identifier>DOI: 10.1002/gene.20045</identifier><identifier>PMID: 15282746</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; beta Catenin ; Blotting, Northern ; Cell Differentiation - physiology ; Cell Lineage - physiology ; Cell Nucleus - metabolism ; Cytoskeletal Proteins - metabolism ; differentiation ; DNA Primers ; embryo ; Endoderm - physiology ; endomesoderm ; Fluorescent Antibody Technique ; Gastrula - metabolism ; gastrulation ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; In Situ Hybridization ; Mesoderm - physiology ; Microinjections ; Oligonucleotides, Antisense ; Plasmids - genetics ; primary mesenchyme cells ; Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; sea urchin ; Sea Urchins - embryology ; Sea Urchins - metabolism ; Signal Transduction - physiology ; Strongylocentrotus purpuratus ; Trans-Activators - metabolism ; Wnt Proteins ; Wnt8 ; Zebrafish Proteins</subject><ispartof>Genesis (New York, N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</citedby><cites>FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgene.20045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgene.20045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15282746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wikramanayake, Athula H.</creatorcontrib><creatorcontrib>Peterson, Robert</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Bince, Joanna M.</creatorcontrib><creatorcontrib>McClay, David R.</creatorcontrib><creatorcontrib>Klein, William H.</creatorcontrib><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><title>Genesis (New York, N.Y. : 2000)</title><addtitle>Genesis</addtitle><description>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>beta Catenin</subject><subject>Blotting, Northern</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Lineage - physiology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>differentiation</subject><subject>DNA Primers</subject><subject>embryo</subject><subject>Endoderm - physiology</subject><subject>endomesoderm</subject><subject>Fluorescent Antibody Technique</subject><subject>Gastrula - metabolism</subject><subject>gastrulation</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>In Situ Hybridization</subject><subject>Mesoderm - physiology</subject><subject>Microinjections</subject><subject>Oligonucleotides, Antisense</subject><subject>Plasmids - genetics</subject><subject>primary mesenchyme cells</subject><subject>Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>sea urchin</subject><subject>Sea Urchins - embryology</subject><subject>Sea Urchins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Strongylocentrotus purpuratus</subject><subject>Trans-Activators - metabolism</subject><subject>Wnt Proteins</subject><subject>Wnt8</subject><subject>Zebrafish Proteins</subject><issn>1526-954X</issn><issn>1526-968X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEoqWw4QGQVyyQUvxvz5KW6YBUDRICtTvLcW5SQ-JM7QQ6T4XEg_BMeCZT2MHK177fOcfSKYrnBJ8SjOnrFgKcUoy5eFAcE0FluZD6-uH9LPj1UfEkpS8YY6EpfVwc5YWmisvj4sd6ch3YiH79LJ0dIfhQ1rCBUEMY0VUYNUq-DbbzoUU-oG_Qwmg75KDrEhoaNN4AyvpuixJYNEV3kynoq7gdUIR26rJpQq1NY9zNfgjIhhrVvmkg5gw_v2WnnDnUEPv9voe0vxyiUM4H20J6WjxqbJfg2eE8KT5fLD-dvysvP6zen7-5LB1bcFE67FgDbKEtt7zCRBFFG6obRgjAohaiAlnzha6AVY5wqioMFdHAJFFOkIadFC9n300cbidIo-l92v3EBhimZKRUXDFO_wsSjaUilGTw1Qy6OKQUoTGb6Hsbt4Zgs-vR7Ho0-x4z_OLgOlU91H_RQ3EZIDPw3Xew_YeVWS3Xy3vTctb4NMLdH42NX41UTAlztV4ZKd5-XJ_pM6PZb-GCvA4</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Wikramanayake, Athula H.</creator><creator>Peterson, Robert</creator><creator>Chen, Jing</creator><creator>Huang, Ling</creator><creator>Bince, Joanna M.</creator><creator>McClay, David R.</creator><creator>Klein, William H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</title><author>Wikramanayake, Athula H. ; Peterson, Robert ; Chen, Jing ; Huang, Ling ; Bince, Joanna M. ; McClay, David R. ; Klein, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-c0c3fe398a4a4b017172f28f311ee9d55be6d498be3bc1427b0eb18e3617c51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>beta Catenin</topic><topic>Blotting, Northern</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Lineage - physiology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>differentiation</topic><topic>DNA Primers</topic><topic>embryo</topic><topic>Endoderm - physiology</topic><topic>endomesoderm</topic><topic>Fluorescent Antibody Technique</topic><topic>Gastrula - metabolism</topic><topic>gastrulation</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>In Situ Hybridization</topic><topic>Mesoderm - physiology</topic><topic>Microinjections</topic><topic>Oligonucleotides, Antisense</topic><topic>Plasmids - genetics</topic><topic>primary mesenchyme cells</topic><topic>Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>sea urchin</topic><topic>Sea Urchins - embryology</topic><topic>Sea Urchins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Strongylocentrotus purpuratus</topic><topic>Trans-Activators - metabolism</topic><topic>Wnt Proteins</topic><topic>Wnt8</topic><topic>Zebrafish Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wikramanayake, Athula H.</creatorcontrib><creatorcontrib>Peterson, Robert</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Bince, Joanna M.</creatorcontrib><creatorcontrib>McClay, David R.</creatorcontrib><creatorcontrib>Klein, William H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genesis (New York, N.Y. : 2000)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wikramanayake, Athula H.</au><au>Peterson, Robert</au><au>Chen, Jing</au><au>Huang, Ling</au><au>Bince, Joanna M.</au><au>McClay, David R.</au><au>Klein, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages</atitle><jtitle>Genesis (New York, N.Y. : 2000)</jtitle><addtitle>Genesis</addtitle><date>2004-07</date><risdate>2004</risdate><volume>39</volume><issue>3</issue><spage>194</spage><epage>205</epage><pages>194-205</pages><issn>1526-954X</issn><eissn>1526-968X</eissn><abstract>The entry of β‐catenin into vegetal cell nuclei beginning at the 16‐cell stage is one of the earliest known molecular asymmetries seen along the animal–vegetal axis in the sea urchin embryo. Nuclear β‐catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear β‐catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16‐cell‐stage micromeres in a nuclear β‐catenin‐dependent manner, and its expression remains restricted to the micromeres until the 60‐cell stage. At the late 60‐cell stage nuclear β‐catenin‐dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16–60‐cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm‐inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8‐morpholino embryos also did not form endoderm, or secondary mesenchyme‐derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo. genesis 39:194–205, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15282746</pmid><doi>10.1002/gene.20045</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1526-954X
ispartof Genesis (New York, N.Y. : 2000), 2004-07, Vol.39 (3), p.194-205
issn 1526-954X
1526-968X
language eng
recordid cdi_proquest_miscellaneous_66747342
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
beta Catenin
Blotting, Northern
Cell Differentiation - physiology
Cell Lineage - physiology
Cell Nucleus - metabolism
Cytoskeletal Proteins - metabolism
differentiation
DNA Primers
embryo
Endoderm - physiology
endomesoderm
Fluorescent Antibody Technique
Gastrula - metabolism
gastrulation
Gene Expression Profiling
Gene Expression Regulation, Developmental
In Situ Hybridization
Mesoderm - physiology
Microinjections
Oligonucleotides, Antisense
Plasmids - genetics
primary mesenchyme cells
Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
sea urchin
Sea Urchins - embryology
Sea Urchins - metabolism
Signal Transduction - physiology
Strongylocentrotus purpuratus
Trans-Activators - metabolism
Wnt Proteins
Wnt8
Zebrafish Proteins
title Nuclear β-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20%CE%B2-catenin-dependent%20Wnt8%20signaling%20in%20vegetal%20cells%20of%20the%20early%20sea%20urchin%20embryo%20regulates%20gastrulation%20and%20differentiation%20of%20endoderm%20and%20mesodermal%20cell%20lineages&rft.jtitle=Genesis%20(New%20York,%20N.Y.%20:%202000)&rft.au=Wikramanayake,%20Athula%20H.&rft.date=2004-07&rft.volume=39&rft.issue=3&rft.spage=194&rft.epage=205&rft.pages=194-205&rft.issn=1526-954X&rft.eissn=1526-968X&rft_id=info:doi/10.1002/gene.20045&rft_dat=%3Cproquest_cross%3E66747342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18067121&rft_id=info:pmid/15282746&rfr_iscdi=true