Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules

Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2004-06, Vol.120 (24), p.11919-11929
Hauptverfasser: Hamelberg, Donald, Mongan, John, McCammon, J Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11929
container_issue 24
container_start_page 11919
container_title The Journal of chemical physics
container_volume 120
creator Hamelberg, Donald
Mongan, John
McCammon, J Andrew
description Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.
doi_str_mv 10.1063/1.1755656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66736978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66736978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-953baf1799e7c34162771f5fae00a7dec2a045b16e427ecf6e772d04cec312123</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMozji68A9IVoKLjnlpmzd1Nwx-wYAb3QklTV800jZj0i7m309lCq4eXA6H-y5j1yCWIFR6D0vAPFe5OmFzEKsiQVWIUzYXQkJSKKFm7CLGHyEEoMzO2QxyqVZS4px9ro2hhoLuqeatb8gMjQ683ne6dSY-cM13wbcuuu6L667mZK0zjrqeR9eObO98x1vqv33NrQ-8cn7SULxkZ1Y3ka6mu2AfT4_vm5dk-_b8ullvE5Nm2CdFnlbaAhYF4ZiAkohgc6tJCI01GalFllegKJNIxipClLXIDJkUJMh0wW6P3rHq70CxL8fC41uN7sgPsVQKU1XgagTvjqAJPsZAttwF1-qwL0GUf1OWUE5TjuzNJB2qlup_ctouPQDyDm7v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66736978</pqid></control><display><type>article</type><title>Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Hamelberg, Donald ; Mongan, John ; McCammon, J Andrew</creator><creatorcontrib>Hamelberg, Donald ; Mongan, John ; McCammon, J Andrew</creatorcontrib><description>Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1755656</identifier><identifier>PMID: 15268227</identifier><language>eng</language><publisher>United States</publisher><subject>Binding Sites ; Computational Biology ; Computer Simulation ; Energy Transfer ; Models, Biological ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2004-06, Vol.120 (24), p.11919-11929</ispartof><rights>(c)2004 American Institute of Physics.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-953baf1799e7c34162771f5fae00a7dec2a045b16e427ecf6e772d04cec312123</citedby><cites>FETCH-LOGICAL-c347t-953baf1799e7c34162771f5fae00a7dec2a045b16e427ecf6e772d04cec312123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15268227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamelberg, Donald</creatorcontrib><creatorcontrib>Mongan, John</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.</description><subject>Binding Sites</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Energy Transfer</subject><subject>Models, Biological</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAURYMozji68A9IVoKLjnlpmzd1Nwx-wYAb3QklTV800jZj0i7m309lCq4eXA6H-y5j1yCWIFR6D0vAPFe5OmFzEKsiQVWIUzYXQkJSKKFm7CLGHyEEoMzO2QxyqVZS4px9ro2hhoLuqeatb8gMjQ683ne6dSY-cM13wbcuuu6L667mZK0zjrqeR9eObO98x1vqv33NrQ-8cn7SULxkZ1Y3ka6mu2AfT4_vm5dk-_b8ullvE5Nm2CdFnlbaAhYF4ZiAkohgc6tJCI01GalFllegKJNIxipClLXIDJkUJMh0wW6P3rHq70CxL8fC41uN7sgPsVQKU1XgagTvjqAJPsZAttwF1-qwL0GUf1OWUE5TjuzNJB2qlup_ctouPQDyDm7v</recordid><startdate>20040622</startdate><enddate>20040622</enddate><creator>Hamelberg, Donald</creator><creator>Mongan, John</creator><creator>McCammon, J Andrew</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040622</creationdate><title>Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules</title><author>Hamelberg, Donald ; Mongan, John ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-953baf1799e7c34162771f5fae00a7dec2a045b16e427ecf6e772d04cec312123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Energy Transfer</topic><topic>Models, Biological</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamelberg, Donald</creatorcontrib><creatorcontrib>Mongan, John</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamelberg, Donald</au><au>Mongan, John</au><au>McCammon, J Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2004-06-22</date><risdate>2004</risdate><volume>120</volume><issue>24</issue><spage>11919</spage><epage>11929</epage><pages>11919-11929</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.</abstract><cop>United States</cop><pmid>15268227</pmid><doi>10.1063/1.1755656</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2004-06, Vol.120 (24), p.11919-11929
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_66736978
source MEDLINE; AIP Journals Complete; AIP Digital Archive
subjects Binding Sites
Computational Biology
Computer Simulation
Energy Transfer
Models, Biological
Thermodynamics
title Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20molecular%20dynamics:%20a%20promising%20and%20efficient%20simulation%20method%20for%20biomolecules&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Hamelberg,%20Donald&rft.date=2004-06-22&rft.volume=120&rft.issue=24&rft.spage=11919&rft.epage=11929&rft.pages=11919-11929&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1755656&rft_dat=%3Cproquest_cross%3E66736978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66736978&rft_id=info:pmid/15268227&rfr_iscdi=true