Intermolecular potential and second virial coefficient of the water-hydrogen complex
We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Physics, 120(2):710-720 120(2):710-720, 2004-01, Vol.120 (2), p.710-720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 2 |
container_start_page | 710 |
container_title | Journal of Chemical Physics, 120(2):710-720 |
container_volume | 120 |
creator | Hodges, Matthew P Wheatley, Richard J Schenter, Gregory K Harvey, Allan H |
description | We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties. |
doi_str_mv | 10.1063/1.1630960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_66736046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66736046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f8aa552a2bcd23f57a84297f5c3e4623b85939826350b1b6b622948ecbe314f43</originalsourceid><addsrcrecordid>eNpF0F1LwzAUBuAgipvTC_-AFATBi858NGl7KcOPwcCbeR3S9MRV2qYmqbp_b8YKXh04POfl8CJ0TfCSYMEeyJIIhkuBT9Cc4KJMc1HiUzTHmJI0rsUMXXj_iTEmOc3O0YxwKvISiznarvsArrMt6LFVLhlsgD40qk1UXycetI3ju3GHjbZgTKObCBJrkrCD5EfF63S3r539gD6Kbmjh9xKdGdV6uJrmAr0_P21Xr-nm7WW9etykmuU8pKZQinOqaKVrygzPVZHRMjdcM8gEZVXBS1YWVDCOK1KJSlBaZgXoChjJTMYW6PaYa31opNdNAL2LH_eggyQcE3yIWaC7oxqc_RrBB9k1XkPbqh7s6KUQORNRRnh_hNpZ7x0YObimU24vCZaHoiWRU9HR3kyhY9VB_S-nZtkfsyt3QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66736046</pqid></control><display><type>article</type><title>Intermolecular potential and second virial coefficient of the water-hydrogen complex</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Hodges, Matthew P ; Wheatley, Richard J ; Schenter, Gregory K ; Harvey, Allan H</creator><creatorcontrib>Hodges, Matthew P ; Wheatley, Richard J ; Schenter, Gregory K ; Harvey, Allan H ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1630960</identifier><identifier>PMID: 15267906</identifier><language>eng</language><publisher>United States</publisher><subject>08 HYDROGEN</subject><ispartof>Journal of Chemical Physics, 120(2):710-720, 2004-01, Vol.120 (2), p.710-720</ispartof><rights>(c) 2004 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f8aa552a2bcd23f57a84297f5c3e4623b85939826350b1b6b622948ecbe314f43</citedby><cites>FETCH-LOGICAL-c375t-f8aa552a2bcd23f57a84297f5c3e4623b85939826350b1b6b622948ecbe314f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15267906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15010462$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodges, Matthew P</creatorcontrib><creatorcontrib>Wheatley, Richard J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Harvey, Allan H</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Intermolecular potential and second virial coefficient of the water-hydrogen complex</title><title>Journal of Chemical Physics, 120(2):710-720</title><addtitle>J Chem Phys</addtitle><description>We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.</description><subject>08 HYDROGEN</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpF0F1LwzAUBuAgipvTC_-AFATBi858NGl7KcOPwcCbeR3S9MRV2qYmqbp_b8YKXh04POfl8CJ0TfCSYMEeyJIIhkuBT9Cc4KJMc1HiUzTHmJI0rsUMXXj_iTEmOc3O0YxwKvISiznarvsArrMt6LFVLhlsgD40qk1UXycetI3ju3GHjbZgTKObCBJrkrCD5EfF63S3r539gD6Kbmjh9xKdGdV6uJrmAr0_P21Xr-nm7WW9etykmuU8pKZQinOqaKVrygzPVZHRMjdcM8gEZVXBS1YWVDCOK1KJSlBaZgXoChjJTMYW6PaYa31opNdNAL2LH_eggyQcE3yIWaC7oxqc_RrBB9k1XkPbqh7s6KUQORNRRnh_hNpZ7x0YObimU24vCZaHoiWRU9HR3kyhY9VB_S-nZtkfsyt3QQ</recordid><startdate>20040108</startdate><enddate>20040108</enddate><creator>Hodges, Matthew P</creator><creator>Wheatley, Richard J</creator><creator>Schenter, Gregory K</creator><creator>Harvey, Allan H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20040108</creationdate><title>Intermolecular potential and second virial coefficient of the water-hydrogen complex</title><author>Hodges, Matthew P ; Wheatley, Richard J ; Schenter, Gregory K ; Harvey, Allan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f8aa552a2bcd23f57a84297f5c3e4623b85939826350b1b6b622948ecbe314f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>08 HYDROGEN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodges, Matthew P</creatorcontrib><creatorcontrib>Wheatley, Richard J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Harvey, Allan H</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Chemical Physics, 120(2):710-720</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodges, Matthew P</au><au>Wheatley, Richard J</au><au>Schenter, Gregory K</au><au>Harvey, Allan H</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermolecular potential and second virial coefficient of the water-hydrogen complex</atitle><jtitle>Journal of Chemical Physics, 120(2):710-720</jtitle><addtitle>J Chem Phys</addtitle><date>2004-01-08</date><risdate>2004</risdate><volume>120</volume><issue>2</issue><spage>710</spage><epage>720</epage><pages>710-720</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.</abstract><cop>United States</cop><pmid>15267906</pmid><doi>10.1063/1.1630960</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | Journal of Chemical Physics, 120(2):710-720, 2004-01, Vol.120 (2), p.710-720 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_66736046 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | 08 HYDROGEN |
title | Intermolecular potential and second virial coefficient of the water-hydrogen complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermolecular%20potential%20and%20second%20virial%20coefficient%20of%20the%20water-hydrogen%20complex&rft.jtitle=Journal%20of%20Chemical%20Physics,%20120(2):710-720&rft.au=Hodges,%20Matthew%20P&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2004-01-08&rft.volume=120&rft.issue=2&rft.spage=710&rft.epage=720&rft.pages=710-720&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1630960&rft_dat=%3Cproquest_osti_%3E66736046%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66736046&rft_id=info:pmid/15267906&rfr_iscdi=true |