Intermolecular potential and second virial coefficient of the water-hydrogen complex

We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Physics, 120(2):710-720 120(2):710-720, 2004-01, Vol.120 (2), p.710-720
Hauptverfasser: Hodges, Matthew P, Wheatley, Richard J, Schenter, Gregory K, Harvey, Allan H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a rigid-body (five-dimensional) potential-energy surface for the water-hydrogen complex using scaled perturbation theory (SPT). An analytic fit of this surface is obtained, and, using this, two minima are found. The global minimum has C2v symmetry, with the hydrogen molecule acting as a proton donor to the oxygen atom on water. A local minimum with Cs symmetry has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by 1097 microEh (Eh approximately 4.359744 x 10(-18) J). Our best estimate of the binding energy, from a complete basis set extrapolation of coupled-cluster calculations, is 1076.1 microEh. The fitted surface is used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). Three complementary methods are used to quantify quantum statistical mechanical effects that become significant at low temperatures. We compare our results with experimental data, which are available over a smaller temperature range (230-700 K). Generally good agreement is found, but the experimental data are subject to larger uncertainties.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1630960