An approach to estimation in relative survival regression

The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biostatistics (Oxford, England) England), 2009-01, Vol.10 (1), p.136-146
Hauptverfasser: Perme, Maja Pohar, Henderson, Robin, Stare, Janez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 136
container_title Biostatistics (Oxford, England)
container_volume 10
creator Perme, Maja Pohar
Henderson, Robin
Stare, Janez
description The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.
doi_str_mv 10.1093/biostatistics/kxn021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66733389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biostatistics/kxn021</oup_id><sourcerecordid>66733389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMozjj6D0SKC3d18vGaNMth8AsEN7oOSSfRjp2mJu2g_95oB0RXrvJIzjvcXIROCb4kWLK5qX3sdV_Hvq7i_PW9xZTsoSkBXubACrH_PRc5cIAJOopxjTGljLNDNCFlIWVB-BTJRZvprgteVy9Z7zObdJtk9W1Wt1mwTZq3NotD2NZb3aSb52BjTO_H6MDpJtqT3TlDT9dXj8vb_P7h5m65uM8rIGWfg2RUaGddhYkR3HLHV7oQKYs2TFNYMQe4MCCBWSqMo4JTqqmllbTSEMJm6GL0ppBvQ8qnNnWsbNPo1vohKs4FY6yUCTz_A679ENqUTVEMwEAmcIZghKrgYwzWqS6kD4cPRbD66lX96lWNvaa1s517MBu7-lnaFZmA-Qj4ofuf8hOMXImt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204434973</pqid></control><display><type>article</type><title>An approach to estimation in relative survival regression</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Perme, Maja Pohar ; Henderson, Robin ; Stare, Janez</creator><creatorcontrib>Perme, Maja Pohar ; Henderson, Robin ; Stare, Janez</creatorcontrib><description>The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxn021</identifier><identifier>PMID: 18599516</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bias ; Biometry - methods ; Estimating techniques ; Follow-Up Studies ; Humans ; Likelihood Functions ; Myocardial Infarction - mortality ; Proportional Hazards Models ; Risk Factors ; Statistical analysis ; Survival Analysis</subject><ispartof>Biostatistics (Oxford, England), 2009-01, Vol.10 (1), p.136-146</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2009</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113</citedby><cites>FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18599516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perme, Maja Pohar</creatorcontrib><creatorcontrib>Henderson, Robin</creatorcontrib><creatorcontrib>Stare, Janez</creatorcontrib><title>An approach to estimation in relative survival regression</title><title>Biostatistics (Oxford, England)</title><addtitle>Biostatistics</addtitle><description>The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Biometry - methods</subject><subject>Estimating techniques</subject><subject>Follow-Up Studies</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Myocardial Infarction - mortality</subject><subject>Proportional Hazards Models</subject><subject>Risk Factors</subject><subject>Statistical analysis</subject><subject>Survival Analysis</subject><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAURYMozjj6D0SKC3d18vGaNMth8AsEN7oOSSfRjp2mJu2g_95oB0RXrvJIzjvcXIROCb4kWLK5qX3sdV_Hvq7i_PW9xZTsoSkBXubACrH_PRc5cIAJOopxjTGljLNDNCFlIWVB-BTJRZvprgteVy9Z7zObdJtk9W1Wt1mwTZq3NotD2NZb3aSb52BjTO_H6MDpJtqT3TlDT9dXj8vb_P7h5m65uM8rIGWfg2RUaGddhYkR3HLHV7oQKYs2TFNYMQe4MCCBWSqMo4JTqqmllbTSEMJm6GL0ppBvQ8qnNnWsbNPo1vohKs4FY6yUCTz_A679ENqUTVEMwEAmcIZghKrgYwzWqS6kD4cPRbD66lX96lWNvaa1s517MBu7-lnaFZmA-Qj4ofuf8hOMXImt</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Perme, Maja Pohar</creator><creator>Henderson, Robin</creator><creator>Stare, Janez</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>An approach to estimation in relative survival regression</title><author>Perme, Maja Pohar ; Henderson, Robin ; Stare, Janez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-49327afefc01b76e6f6da57002ab3a24d3f405b4943e27bf27622a2e2c9e9b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Biometry - methods</topic><topic>Estimating techniques</topic><topic>Follow-Up Studies</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Myocardial Infarction - mortality</topic><topic>Proportional Hazards Models</topic><topic>Risk Factors</topic><topic>Statistical analysis</topic><topic>Survival Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perme, Maja Pohar</creatorcontrib><creatorcontrib>Henderson, Robin</creatorcontrib><creatorcontrib>Stare, Janez</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perme, Maja Pohar</au><au>Henderson, Robin</au><au>Stare, Janez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approach to estimation in relative survival regression</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><addtitle>Biostatistics</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>10</volume><issue>1</issue><spage>136</spage><epage>146</epage><pages>136-146</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components-the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18599516</pmid><doi>10.1093/biostatistics/kxn021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-4644
ispartof Biostatistics (Oxford, England), 2009-01, Vol.10 (1), p.136-146
issn 1465-4644
1468-4357
language eng
recordid cdi_proquest_miscellaneous_66733389
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Bias
Biometry - methods
Estimating techniques
Follow-Up Studies
Humans
Likelihood Functions
Myocardial Infarction - mortality
Proportional Hazards Models
Risk Factors
Statistical analysis
Survival Analysis
title An approach to estimation in relative survival regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approach%20to%20estimation%20in%20relative%20survival%20regression&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Perme,%20Maja%20Pohar&rft.date=2009-01-01&rft.volume=10&rft.issue=1&rft.spage=136&rft.epage=146&rft.pages=136-146&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxn021&rft_dat=%3Cproquest_cross%3E66733389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204434973&rft_id=info:pmid/18599516&rft_oup_id=10.1093/biostatistics/kxn021&rfr_iscdi=true