Single-shot half-fourier RARE sequence with ultra-short inter-echo spacing for lung imaging

Purpose To improve the image quality of pulmonary magnetic resonance (MR) imaging using an ultra‐short inter‐echo spacing half‐Fourier single shot rapid acquisition with relaxation enhancement (USHA‐RARE) sequence. Materials and Methods Pulmonary MR images were acquired by USHA‐RARE sequence with va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2004-08, Vol.20 (2), p.336-339
Hauptverfasser: Ohno, Yoshiharu, Oshio, Koichi, Uematsu, Hidemasa, Nakatsu, Masashi, Gefter, Warren B., Hatabu, Hiroto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose To improve the image quality of pulmonary magnetic resonance (MR) imaging using an ultra‐short inter‐echo spacing half‐Fourier single shot rapid acquisition with relaxation enhancement (USHA‐RARE) sequence. Materials and Methods Pulmonary MR images were acquired by USHA‐RARE sequence with various inter‐echo spacings. The sequence parameters were as follows: repetition time (TR)/effective TE: infinite/39–41 msec; section thickness: 10 mm; acquisition matrix: 128 × 128; field of view: 450 × 450 mm. Inter‐echo spacing varied (2.5 msec, 3.0 msec, 3.5 msec, 4.0 msec, 4.5 msec, 5.0 msec), and the respective phase‐encoding steps were 80, 77, 75, 74, 73, and 72. Signal‐to‐noise ratios (SNRs), the signal ratios between lung and fat (lung‐to‐fat ratio: LFRs), and the signal ratios between the lung and the serratus anterior muscle (lung‐to‐muscle ratio: LMRs) of each inter‐echo spacing were calculated, and statistically evaluated. Results The SNRs at inter‐echo spacings of ≤ 3.0 msec were significantly higher than those ≥ 4.0 msec (P < 0.05). The LFRs and LMRs at inter‐echo spacing ≤ 3.0 msec were significantly higher than those ≥ 4.0 msec (P < 0.05). Conclusion USHA‐RARE sequence does improve signal intensity from the lung. J. Magn. Reson. Imaging 2004;20:336–339. © 2004 Wiley‐Liss, Inc.
ISSN:1053-1807
1522-2586
DOI:10.1002/jmri.20107