Dynamics and the breaking of a driven cage: I2 in solid Ar
Pump-probe measurements of I2 in solid Ar are reported and analyzed to extract a description of cage response to impulsive excitation, from the gentle kick, up to the breaking point. The most informative data are obtained through wavepacket motion on cage-bound, but otherwise dissociative, potential...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2004-04, Vol.120 (16), p.7576-7589 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pump-probe measurements of I2 in solid Ar are reported and analyzed to extract a description of cage response to impulsive excitation, from the gentle kick, up to the breaking point. The most informative data are obtained through wavepacket motion on cage-bound, but otherwise dissociative, potentials where the chromophore acts as a transducer to drive the cage and to report on the local dynamics. This general class of dynamics is identified and analyzed as a function of energy in Ar, Kr, and Xe. The overdriven cage rebounds with a characteristic period of 1.2 ps that shows little dependence on excitation amplitude in all hosts. After rebound, the cage rings as a local resonant mode in Ar, with a period of 1 ps and dephasing time of 3 ps. This mode remains at the Debye edge in Kr and Xe, with periods of 630 and 800 fs, and dephasing times of 8 and 6 ps, respectively. In the bound B-state, the cage fluctuates toward its dilated equilibrium structure on a time scale of 3 ps, which is extracted from the down-chirp in the molecular vibrational frequency. When kicked with excess energy of 4 eV, the Ar cage breaks with 50% probability, and the molecule dissociates. The kinetics of polarization selective, multiphoton dissociation with Gaussian laser intensity profiles is delineated and the ballistics of cage breakout is described: The photodissociation proceeds by destruction of the local lattice, by creating interstitials and vacancies. During large amplitude motion on cage-bound potentials, sudden, nonadiabatic spin-flip transitions can be observed and quantified in space and time. The spin-flip occurs with unit probability in Ar when the I*-I bond is stretched beyond 6 A. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1689958 |