The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering
Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that gene...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2009-02, Vol.30 (4), p.499-507 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 4 |
container_start_page | 499 |
container_title | Biomaterials |
container_volume | 30 |
creator | Hwang, Yu-Shik Cho, Johann Tay, Feng Heng, Jerry Y.Y Ho, Raimundo Kazarian, Sergei G Williams, Daryl R Boccaccini, Aldo R Polak, Julia M Mantalaris, Athanasios |
description | Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation. |
doi_str_mv | 10.1016/j.biomaterials.2008.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66728701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961208004845</els_id><sourcerecordid>66728701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</originalsourceid><addsrcrecordid>eNqNUk2LFDEQDaK4s6t_QYIHT_aYr07SHgRZ1w9Y8OB6Dul09ZixOxmT9MIc_O-mmQHFi56KhFev6r1XCD2nZEsJla_2297H2RZI3k55ywjRW6K2hOkHaEO10k3bkfYh2hAqWNNJyi7QZc57Ut9EsMfogupOKcLUBv28-wZ4yYDjiOcl-QAY5j4dY_AO5wIzdjBN-SW2086HOhNDcPaQl8kWH0P9DwNOsdh0xLN3Ke6SvffliOuKCawrMWEfcB8rcfE5LytBZYK6fNg9QY_GKgGenusV-vr-5u76Y3P7-cOn67e3jWs5KQ3vOiHUWIuzUtiRMiJF6wRt9dgLOTjZj6odexBacddLPQJXwAE0Z67jPb9CL068hxR_LJCLmX1ehdkAcclGSsW0IvSfQN7KTirZVuDrE7BKzjnBaA7Jz9UFQ4lZUzJ782dKZk3JEGVqSrX52XnK0s8w_G49x1IB704AqKbce0gmO1-Nh8EncMUM0f_fnDd_0bjJ12Dt9B2OkPdxSWHtoSYzQ8yX9V7WcyGaEKFFy38BmaPCDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35696765</pqid></control><display><type>article</type><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</creator><creatorcontrib>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</creatorcontrib><description>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2008.07.028</identifier><identifier>PMID: 18977027</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alginate hydrogels ; Alginates - metabolism ; Animals ; Biomechanical Phenomena ; Bioreactors ; Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone and Bones - ultrastructure ; Calcification, Physiologic ; Cell Proliferation ; Cell Shape ; Cell Survival ; Dentistry ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Gene Expression Regulation ; Glucuronic Acid - metabolism ; Hexuronic Acids - metabolism ; Mice ; Mineralisation ; Osteogenesis - genetics ; Osteogenic differentiation ; Reverse Transcriptase Polymerase Chain Reaction ; Three-dimensional bioprocessing ; Tissue Engineering ; Weightlessness</subject><ispartof>Biomaterials, 2009-02, Vol.30 (4), p.499-507</ispartof><rights>2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</citedby><cites>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961208004845$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18977027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Yu-Shik</creatorcontrib><creatorcontrib>Cho, Johann</creatorcontrib><creatorcontrib>Tay, Feng</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y</creatorcontrib><creatorcontrib>Ho, Raimundo</creatorcontrib><creatorcontrib>Kazarian, Sergei G</creatorcontrib><creatorcontrib>Williams, Daryl R</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</description><subject>Advanced Basic Science</subject><subject>Alginate hydrogels</subject><subject>Alginates - metabolism</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bioreactors</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - ultrastructure</subject><subject>Calcification, Physiologic</subject><subject>Cell Proliferation</subject><subject>Cell Shape</subject><subject>Cell Survival</subject><subject>Dentistry</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glucuronic Acid - metabolism</subject><subject>Hexuronic Acids - metabolism</subject><subject>Mice</subject><subject>Mineralisation</subject><subject>Osteogenesis - genetics</subject><subject>Osteogenic differentiation</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Three-dimensional bioprocessing</subject><subject>Tissue Engineering</subject><subject>Weightlessness</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2LFDEQDaK4s6t_QYIHT_aYr07SHgRZ1w9Y8OB6Dul09ZixOxmT9MIc_O-mmQHFi56KhFev6r1XCD2nZEsJla_2297H2RZI3k55ywjRW6K2hOkHaEO10k3bkfYh2hAqWNNJyi7QZc57Ut9EsMfogupOKcLUBv28-wZ4yYDjiOcl-QAY5j4dY_AO5wIzdjBN-SW2086HOhNDcPaQl8kWH0P9DwNOsdh0xLN3Ke6SvffliOuKCawrMWEfcB8rcfE5LytBZYK6fNg9QY_GKgGenusV-vr-5u76Y3P7-cOn67e3jWs5KQ3vOiHUWIuzUtiRMiJF6wRt9dgLOTjZj6odexBacddLPQJXwAE0Z67jPb9CL068hxR_LJCLmX1ehdkAcclGSsW0IvSfQN7KTirZVuDrE7BKzjnBaA7Jz9UFQ4lZUzJ782dKZk3JEGVqSrX52XnK0s8w_G49x1IB704AqKbce0gmO1-Nh8EncMUM0f_fnDd_0bjJ12Dt9B2OkPdxSWHtoSYzQ8yX9V7WcyGaEKFFy38BmaPCDQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Hwang, Yu-Shik</creator><creator>Cho, Johann</creator><creator>Tay, Feng</creator><creator>Heng, Jerry Y.Y</creator><creator>Ho, Raimundo</creator><creator>Kazarian, Sergei G</creator><creator>Williams, Daryl R</creator><creator>Boccaccini, Aldo R</creator><creator>Polak, Julia M</creator><creator>Mantalaris, Athanasios</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><author>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Advanced Basic Science</topic><topic>Alginate hydrogels</topic><topic>Alginates - metabolism</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bioreactors</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - ultrastructure</topic><topic>Calcification, Physiologic</topic><topic>Cell Proliferation</topic><topic>Cell Shape</topic><topic>Cell Survival</topic><topic>Dentistry</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glucuronic Acid - metabolism</topic><topic>Hexuronic Acids - metabolism</topic><topic>Mice</topic><topic>Mineralisation</topic><topic>Osteogenesis - genetics</topic><topic>Osteogenic differentiation</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Three-dimensional bioprocessing</topic><topic>Tissue Engineering</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Yu-Shik</creatorcontrib><creatorcontrib>Cho, Johann</creatorcontrib><creatorcontrib>Tay, Feng</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y</creatorcontrib><creatorcontrib>Ho, Raimundo</creatorcontrib><creatorcontrib>Kazarian, Sergei G</creatorcontrib><creatorcontrib>Williams, Daryl R</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Yu-Shik</au><au>Cho, Johann</au><au>Tay, Feng</au><au>Heng, Jerry Y.Y</au><au>Ho, Raimundo</au><au>Kazarian, Sergei G</au><au>Williams, Daryl R</au><au>Boccaccini, Aldo R</au><au>Polak, Julia M</au><au>Mantalaris, Athanasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>30</volume><issue>4</issue><spage>499</spage><epage>507</epage><pages>499-507</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>18977027</pmid><doi>10.1016/j.biomaterials.2008.07.028</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2009-02, Vol.30 (4), p.499-507 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_66728701 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Alginate hydrogels Alginates - metabolism Animals Biomechanical Phenomena Bioreactors Bone and Bones - cytology Bone and Bones - metabolism Bone and Bones - ultrastructure Calcification, Physiologic Cell Proliferation Cell Shape Cell Survival Dentistry Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Gene Expression Regulation Glucuronic Acid - metabolism Hexuronic Acids - metabolism Mice Mineralisation Osteogenesis - genetics Osteogenic differentiation Reverse Transcriptase Polymerase Chain Reaction Three-dimensional bioprocessing Tissue Engineering Weightlessness |
title | The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20murine%20embryonic%20stem%20cells,%20alginate%20encapsulation,%20and%20rotary%20microgravity%20bioreactor%20in%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=Hwang,%20Yu-Shik&rft.date=2009-02-01&rft.volume=30&rft.issue=4&rft.spage=499&rft.epage=507&rft.pages=499-507&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2008.07.028&rft_dat=%3Cproquest_cross%3E66728701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35696765&rft_id=info:pmid/18977027&rft_els_id=1_s2_0_S0142961208004845&rfr_iscdi=true |