The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering

Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2009-02, Vol.30 (4), p.499-507
Hauptverfasser: Hwang, Yu-Shik, Cho, Johann, Tay, Feng, Heng, Jerry Y.Y, Ho, Raimundo, Kazarian, Sergei G, Williams, Daryl R, Boccaccini, Aldo R, Polak, Julia M, Mantalaris, Athanasios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 4
container_start_page 499
container_title Biomaterials
container_volume 30
creator Hwang, Yu-Shik
Cho, Johann
Tay, Feng
Heng, Jerry Y.Y
Ho, Raimundo
Kazarian, Sergei G
Williams, Daryl R
Boccaccini, Aldo R
Polak, Julia M
Mantalaris, Athanasios
description Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.
doi_str_mv 10.1016/j.biomaterials.2008.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66728701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961208004845</els_id><sourcerecordid>66728701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</originalsourceid><addsrcrecordid>eNqNUk2LFDEQDaK4s6t_QYIHT_aYr07SHgRZ1w9Y8OB6Dul09ZixOxmT9MIc_O-mmQHFi56KhFev6r1XCD2nZEsJla_2297H2RZI3k55ywjRW6K2hOkHaEO10k3bkfYh2hAqWNNJyi7QZc57Ut9EsMfogupOKcLUBv28-wZ4yYDjiOcl-QAY5j4dY_AO5wIzdjBN-SW2086HOhNDcPaQl8kWH0P9DwNOsdh0xLN3Ke6SvffliOuKCawrMWEfcB8rcfE5LytBZYK6fNg9QY_GKgGenusV-vr-5u76Y3P7-cOn67e3jWs5KQ3vOiHUWIuzUtiRMiJF6wRt9dgLOTjZj6odexBacddLPQJXwAE0Z67jPb9CL068hxR_LJCLmX1ehdkAcclGSsW0IvSfQN7KTirZVuDrE7BKzjnBaA7Jz9UFQ4lZUzJ782dKZk3JEGVqSrX52XnK0s8w_G49x1IB704AqKbce0gmO1-Nh8EncMUM0f_fnDd_0bjJ12Dt9B2OkPdxSWHtoSYzQ8yX9V7WcyGaEKFFy38BmaPCDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35696765</pqid></control><display><type>article</type><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</creator><creatorcontrib>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</creatorcontrib><description>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2008.07.028</identifier><identifier>PMID: 18977027</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Alginate hydrogels ; Alginates - metabolism ; Animals ; Biomechanical Phenomena ; Bioreactors ; Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone and Bones - ultrastructure ; Calcification, Physiologic ; Cell Proliferation ; Cell Shape ; Cell Survival ; Dentistry ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Gene Expression Regulation ; Glucuronic Acid - metabolism ; Hexuronic Acids - metabolism ; Mice ; Mineralisation ; Osteogenesis - genetics ; Osteogenic differentiation ; Reverse Transcriptase Polymerase Chain Reaction ; Three-dimensional bioprocessing ; Tissue Engineering ; Weightlessness</subject><ispartof>Biomaterials, 2009-02, Vol.30 (4), p.499-507</ispartof><rights>2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</citedby><cites>FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961208004845$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18977027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Yu-Shik</creatorcontrib><creatorcontrib>Cho, Johann</creatorcontrib><creatorcontrib>Tay, Feng</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y</creatorcontrib><creatorcontrib>Ho, Raimundo</creatorcontrib><creatorcontrib>Kazarian, Sergei G</creatorcontrib><creatorcontrib>Williams, Daryl R</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</description><subject>Advanced Basic Science</subject><subject>Alginate hydrogels</subject><subject>Alginates - metabolism</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bioreactors</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - ultrastructure</subject><subject>Calcification, Physiologic</subject><subject>Cell Proliferation</subject><subject>Cell Shape</subject><subject>Cell Survival</subject><subject>Dentistry</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glucuronic Acid - metabolism</subject><subject>Hexuronic Acids - metabolism</subject><subject>Mice</subject><subject>Mineralisation</subject><subject>Osteogenesis - genetics</subject><subject>Osteogenic differentiation</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Three-dimensional bioprocessing</subject><subject>Tissue Engineering</subject><subject>Weightlessness</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2LFDEQDaK4s6t_QYIHT_aYr07SHgRZ1w9Y8OB6Dul09ZixOxmT9MIc_O-mmQHFi56KhFev6r1XCD2nZEsJla_2297H2RZI3k55ywjRW6K2hOkHaEO10k3bkfYh2hAqWNNJyi7QZc57Ut9EsMfogupOKcLUBv28-wZ4yYDjiOcl-QAY5j4dY_AO5wIzdjBN-SW2086HOhNDcPaQl8kWH0P9DwNOsdh0xLN3Ke6SvffliOuKCawrMWEfcB8rcfE5LytBZYK6fNg9QY_GKgGenusV-vr-5u76Y3P7-cOn67e3jWs5KQ3vOiHUWIuzUtiRMiJF6wRt9dgLOTjZj6odexBacddLPQJXwAE0Z67jPb9CL068hxR_LJCLmX1ehdkAcclGSsW0IvSfQN7KTirZVuDrE7BKzjnBaA7Jz9UFQ4lZUzJ782dKZk3JEGVqSrX52XnK0s8w_G49x1IB704AqKbce0gmO1-Nh8EncMUM0f_fnDd_0bjJ12Dt9B2OkPdxSWHtoSYzQ8yX9V7WcyGaEKFFy38BmaPCDQ</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Hwang, Yu-Shik</creator><creator>Cho, Johann</creator><creator>Tay, Feng</creator><creator>Heng, Jerry Y.Y</creator><creator>Ho, Raimundo</creator><creator>Kazarian, Sergei G</creator><creator>Williams, Daryl R</creator><creator>Boccaccini, Aldo R</creator><creator>Polak, Julia M</creator><creator>Mantalaris, Athanasios</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</title><author>Hwang, Yu-Shik ; Cho, Johann ; Tay, Feng ; Heng, Jerry Y.Y ; Ho, Raimundo ; Kazarian, Sergei G ; Williams, Daryl R ; Boccaccini, Aldo R ; Polak, Julia M ; Mantalaris, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-399447f399ca64af120645c4158fb46dc6bf75fbe4873cb68fe37e3ee832c93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Advanced Basic Science</topic><topic>Alginate hydrogels</topic><topic>Alginates - metabolism</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bioreactors</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - ultrastructure</topic><topic>Calcification, Physiologic</topic><topic>Cell Proliferation</topic><topic>Cell Shape</topic><topic>Cell Survival</topic><topic>Dentistry</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glucuronic Acid - metabolism</topic><topic>Hexuronic Acids - metabolism</topic><topic>Mice</topic><topic>Mineralisation</topic><topic>Osteogenesis - genetics</topic><topic>Osteogenic differentiation</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Three-dimensional bioprocessing</topic><topic>Tissue Engineering</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Yu-Shik</creatorcontrib><creatorcontrib>Cho, Johann</creatorcontrib><creatorcontrib>Tay, Feng</creatorcontrib><creatorcontrib>Heng, Jerry Y.Y</creatorcontrib><creatorcontrib>Ho, Raimundo</creatorcontrib><creatorcontrib>Kazarian, Sergei G</creatorcontrib><creatorcontrib>Williams, Daryl R</creatorcontrib><creatorcontrib>Boccaccini, Aldo R</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Yu-Shik</au><au>Cho, Johann</au><au>Tay, Feng</au><au>Heng, Jerry Y.Y</au><au>Ho, Raimundo</au><au>Kazarian, Sergei G</au><au>Williams, Daryl R</au><au>Boccaccini, Aldo R</au><au>Polak, Julia M</au><au>Mantalaris, Athanasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>30</volume><issue>4</issue><spage>499</spage><epage>507</epage><pages>499-507</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The application of embryonic stem cells (ESCs) in bone tissue engineering and regenerative medicine requires the development of suitable bioprocesses that facilitate the integrated, reproducible, automatable production of clinically-relevant, scaleable, and integrated bioprocesses that generate sufficient cell numbers resulting in the formation of three-dimensional (3D) mineralised, bone tissue-like constructs. Previously, we have reported the enhanced differentiation of undifferentiated mESCs toward the osteogenic lineage in the absence of embryoid body formation. Herein, we present an efficient and integrated 3D bioprocess based on the encapsulation of undifferentiated mESCs within alginate hydrogels and culture in a rotary cell culture microgravity bioreactor. Specifically, for the first 3 days, encapsulated mESCs were cultured in 50% (v/v) HepG2 conditioned medium to generate a cell population with enhanced mesodermal differentiation capability followed by osteogenic differentiation using osteogenic media containing ascorbic acid, β-glycerophosphate and dexamethasone. 3D mineralised constructs were generated that displayed the morphological, phenotypical, and molecular attributes of the osteogenic lineage, as well mechanical strength and mineralised calcium/phosphate deposition. Consequently, this bioprocess provides an efficient, automatable, scalable and functional culture system for application to bone tissue engineering in the context of macroscopic bone formation.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>18977027</pmid><doi>10.1016/j.biomaterials.2008.07.028</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2009-02, Vol.30 (4), p.499-507
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_66728701
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Alginate hydrogels
Alginates - metabolism
Animals
Biomechanical Phenomena
Bioreactors
Bone and Bones - cytology
Bone and Bones - metabolism
Bone and Bones - ultrastructure
Calcification, Physiologic
Cell Proliferation
Cell Shape
Cell Survival
Dentistry
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Gene Expression Regulation
Glucuronic Acid - metabolism
Hexuronic Acids - metabolism
Mice
Mineralisation
Osteogenesis - genetics
Osteogenic differentiation
Reverse Transcriptase Polymerase Chain Reaction
Three-dimensional bioprocessing
Tissue Engineering
Weightlessness
title The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20murine%20embryonic%20stem%20cells,%20alginate%20encapsulation,%20and%20rotary%20microgravity%20bioreactor%20in%20bone%20tissue%20engineering&rft.jtitle=Biomaterials&rft.au=Hwang,%20Yu-Shik&rft.date=2009-02-01&rft.volume=30&rft.issue=4&rft.spage=499&rft.epage=507&rft.pages=499-507&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2008.07.028&rft_dat=%3Cproquest_cross%3E66728701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35696765&rft_id=info:pmid/18977027&rft_els_id=1_s2_0_S0142961208004845&rfr_iscdi=true