The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation

Abstract Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2009-02, Vol.30 (4), p.556-564
Hauptverfasser: Christopherson, Gregory T, Song, Hongjun, Mao, Hai-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 4
container_start_page 556
container_title Biomaterials
container_volume 30
creator Christopherson, Gregory T
Song, Hongjun
Mao, Hai-Quan
description Abstract Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES) fiber meshes with average fiber diameters of 283 ± 45 nm, 749 ± 153 nm and 1452 ± 312 nm; and demonstrated that fiber diameter of PES mesh significantly influences rNSC differentiation and proliferation. Under the differentiation condition (in the presence of 1 μ m retinoic acid and 1% fetal bovine serum), rNSCs showed a 40% increase in oligodendrocyte differentiation on 283-nm fibers and 20% increase in neuronal differentiation on 749-nm fibers, in comparison to tissue culture polystyrene surface. SEM imaging revealed that cells stretched multi-directionally to follow underlying 283-nm fibers, but extended along a single fiber axis on larger fibers. When cultured on fiber meshes in serum free medium in the presence of 20 ng/mL of FGF-2, rNSCs showed lower proliferation and more rounded morphology compared to that cultured on laminin-coated 2D surface. As the fiber diameter decreased, higher degree of proliferation and cell spreading and lower degree of cell aggregation were observed. This collective evidence indicates fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.
doi_str_mv 10.1016/j.biomaterials.2008.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66728660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961208007783</els_id><sourcerecordid>66728660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-b126d6994d675b5cfa9e36961d723fd33b08ca4668d53d25bd9bcb158d34ed973</originalsourceid><addsrcrecordid>eNqNUk2LFDEQDaK4s6t_QYIHbz3mo5NOexBk1VVY8OB6DvmoYMbu9Jh0C_vvTZwBxYueQqreq1dVrxB6TsmeEipfHvY2LrNZIUczlT0jRNXEnpD-AdpRNahOjEQ8RDtCe9aNkrILdFnKgdQ_6dljdEHVOAyEiR1a7r4CjilMGyQHeAk4RAsZ-2hmqAotAhO4NS_luCVcNlvWXLULXhJOsGUz4bLCjB1MU6WFABnSGs0aK8Akj495mWKN_oo8QY9CbRqent8r9OX9u7vrD93tp5uP129uOyc4WTtLmfRyHHsvB2GFC2YELusofmA8eM4tUc70UiovuGfC-tE6S4XyvAc_DvwKvTjVrerfNyirnmNpLZoEy1a0lANTUpJ_ArmQSjHRgK9OQFdXUTIEfcxxNvleU6KbL_qg__RFN19arvpSyc_OKpudwf-mno2ogLcnANSl_IiQdXGxWeJjrtvXfon_p_P6rzJuiik6M32DeyiHZcupcaguTBP9uV1IOxCiCBkGxflP3BC80w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35688250</pqid></control><display><type>article</type><title>The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Christopherson, Gregory T ; Song, Hongjun ; Mao, Hai-Quan</creator><creatorcontrib>Christopherson, Gregory T ; Song, Hongjun ; Mao, Hai-Quan</creatorcontrib><description>Abstract Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES) fiber meshes with average fiber diameters of 283 ± 45 nm, 749 ± 153 nm and 1452 ± 312 nm; and demonstrated that fiber diameter of PES mesh significantly influences rNSC differentiation and proliferation. Under the differentiation condition (in the presence of 1 μ m retinoic acid and 1% fetal bovine serum), rNSCs showed a 40% increase in oligodendrocyte differentiation on 283-nm fibers and 20% increase in neuronal differentiation on 749-nm fibers, in comparison to tissue culture polystyrene surface. SEM imaging revealed that cells stretched multi-directionally to follow underlying 283-nm fibers, but extended along a single fiber axis on larger fibers. When cultured on fiber meshes in serum free medium in the presence of 20 ng/mL of FGF-2, rNSCs showed lower proliferation and more rounded morphology compared to that cultured on laminin-coated 2D surface. As the fiber diameter decreased, higher degree of proliferation and cell spreading and lower degree of cell aggregation were observed. This collective evidence indicates fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2008.10.004</identifier><identifier>PMID: 18977025</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cell Shape - drug effects ; Cells, Cultured ; Dentistry ; Differentiation ; Electrospun fiber ; Fiber diameter ; Fibroblast Growth Factor 2 - pharmacology ; Fluorescent Antibody Technique ; Microscopy, Electron, Scanning ; Nanotopography ; Neural stem cells ; Neurons - cytology ; Neurons - drug effects ; Neurons - ultrastructure ; Proliferation ; Rats ; Serum ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - ultrastructure ; Tretinoin - pharmacology</subject><ispartof>Biomaterials, 2009-02, Vol.30 (4), p.556-564</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-b126d6994d675b5cfa9e36961d723fd33b08ca4668d53d25bd9bcb158d34ed973</citedby><cites>FETCH-LOGICAL-c530t-b126d6994d675b5cfa9e36961d723fd33b08ca4668d53d25bd9bcb158d34ed973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961208007783$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18977025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christopherson, Gregory T</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Mao, Hai-Quan</creatorcontrib><title>The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES) fiber meshes with average fiber diameters of 283 ± 45 nm, 749 ± 153 nm and 1452 ± 312 nm; and demonstrated that fiber diameter of PES mesh significantly influences rNSC differentiation and proliferation. Under the differentiation condition (in the presence of 1 μ m retinoic acid and 1% fetal bovine serum), rNSCs showed a 40% increase in oligodendrocyte differentiation on 283-nm fibers and 20% increase in neuronal differentiation on 749-nm fibers, in comparison to tissue culture polystyrene surface. SEM imaging revealed that cells stretched multi-directionally to follow underlying 283-nm fibers, but extended along a single fiber axis on larger fibers. When cultured on fiber meshes in serum free medium in the presence of 20 ng/mL of FGF-2, rNSCs showed lower proliferation and more rounded morphology compared to that cultured on laminin-coated 2D surface. As the fiber diameter decreased, higher degree of proliferation and cell spreading and lower degree of cell aggregation were observed. This collective evidence indicates fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Cells, Cultured</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>Electrospun fiber</subject><subject>Fiber diameter</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Fluorescent Antibody Technique</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanotopography</subject><subject>Neural stem cells</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - ultrastructure</subject><subject>Proliferation</subject><subject>Rats</subject><subject>Serum</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - ultrastructure</subject><subject>Tretinoin - pharmacology</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk2LFDEQDaK4s6t_QYIHbz3mo5NOexBk1VVY8OB6DvmoYMbu9Jh0C_vvTZwBxYueQqreq1dVrxB6TsmeEipfHvY2LrNZIUczlT0jRNXEnpD-AdpRNahOjEQ8RDtCe9aNkrILdFnKgdQ_6dljdEHVOAyEiR1a7r4CjilMGyQHeAk4RAsZ-2hmqAotAhO4NS_luCVcNlvWXLULXhJOsGUz4bLCjB1MU6WFABnSGs0aK8Akj495mWKN_oo8QY9CbRqent8r9OX9u7vrD93tp5uP129uOyc4WTtLmfRyHHsvB2GFC2YELusofmA8eM4tUc70UiovuGfC-tE6S4XyvAc_DvwKvTjVrerfNyirnmNpLZoEy1a0lANTUpJ_ArmQSjHRgK9OQFdXUTIEfcxxNvleU6KbL_qg__RFN19arvpSyc_OKpudwf-mno2ogLcnANSl_IiQdXGxWeJjrtvXfon_p_P6rzJuiik6M32DeyiHZcupcaguTBP9uV1IOxCiCBkGxflP3BC80w</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Christopherson, Gregory T</creator><creator>Song, Hongjun</creator><creator>Mao, Hai-Quan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation</title><author>Christopherson, Gregory T ; Song, Hongjun ; Mao, Hai-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-b126d6994d675b5cfa9e36961d723fd33b08ca4668d53d25bd9bcb158d34ed973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Cells, Cultured</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>Electrospun fiber</topic><topic>Fiber diameter</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Fluorescent Antibody Technique</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanotopography</topic><topic>Neural stem cells</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - ultrastructure</topic><topic>Proliferation</topic><topic>Rats</topic><topic>Serum</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - ultrastructure</topic><topic>Tretinoin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christopherson, Gregory T</creatorcontrib><creatorcontrib>Song, Hongjun</creatorcontrib><creatorcontrib>Mao, Hai-Quan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christopherson, Gregory T</au><au>Song, Hongjun</au><au>Mao, Hai-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>30</volume><issue>4</issue><spage>556</spage><epage>564</epage><pages>556-564</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES) fiber meshes with average fiber diameters of 283 ± 45 nm, 749 ± 153 nm and 1452 ± 312 nm; and demonstrated that fiber diameter of PES mesh significantly influences rNSC differentiation and proliferation. Under the differentiation condition (in the presence of 1 μ m retinoic acid and 1% fetal bovine serum), rNSCs showed a 40% increase in oligodendrocyte differentiation on 283-nm fibers and 20% increase in neuronal differentiation on 749-nm fibers, in comparison to tissue culture polystyrene surface. SEM imaging revealed that cells stretched multi-directionally to follow underlying 283-nm fibers, but extended along a single fiber axis on larger fibers. When cultured on fiber meshes in serum free medium in the presence of 20 ng/mL of FGF-2, rNSCs showed lower proliferation and more rounded morphology compared to that cultured on laminin-coated 2D surface. As the fiber diameter decreased, higher degree of proliferation and cell spreading and lower degree of cell aggregation were observed. This collective evidence indicates fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>18977025</pmid><doi>10.1016/j.biomaterials.2008.10.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2009-02, Vol.30 (4), p.556-564
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_66728660
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Cell Shape - drug effects
Cells, Cultured
Dentistry
Differentiation
Electrospun fiber
Fiber diameter
Fibroblast Growth Factor 2 - pharmacology
Fluorescent Antibody Technique
Microscopy, Electron, Scanning
Nanotopography
Neural stem cells
Neurons - cytology
Neurons - drug effects
Neurons - ultrastructure
Proliferation
Rats
Serum
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - ultrastructure
Tretinoin - pharmacology
title The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20fiber%20diameter%20of%20electrospun%20substrates%20on%20neural%20stem%20cell%20differentiation%20and%20proliferation&rft.jtitle=Biomaterials&rft.au=Christopherson,%20Gregory%20T&rft.date=2009-02-01&rft.volume=30&rft.issue=4&rft.spage=556&rft.epage=564&rft.pages=556-564&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2008.10.004&rft_dat=%3Cproquest_cross%3E66728660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35688250&rft_id=info:pmid/18977025&rft_els_id=1_s2_0_S0142961208007783&rfr_iscdi=true