Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria

Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synapton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2004-08, Vol.137 (2), p.299-303
Hauptverfasser: Brown, Maile R, Sullivan, Patrick G, Dorenbos, Kristina A, Modafferi, Edward A, Geddes, James W, Steward, Oswald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 2
container_start_page 299
container_title Journal of neuroscience methods
container_volume 137
creator Brown, Maile R
Sullivan, Patrick G
Dorenbos, Kristina A
Modafferi, Edward A
Geddes, James W
Steward, Oswald
description Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synaptoneurosomes and isolate both synaptic and non-synaptic mitochondria without structural or functional damage. A novel method is reported here for disruption of synaptoneurosomes and isolation of total brain mitochondria from synaptic and non-synaptic sources using a nitrogen decompression technique. Nitrogen gas was dissolved into crude mitochondrial preparations and maintained under constant, moderate pressure. After a short incubation, the pressure was released causing the nitrogen to come out of solution as growing bubbles, which ruptures cellular and synaptoneurosomal membranes. Mitochondria isolated using this rapid technique were bioenergetically competent and exhibited functional characteristics comparable to mitochondria isolated using traditional techniques. This nitrogen decompression technique will allow for further characterization of synaptic pools of mitochondria, which are almost exclusively neuronal in origin.
doi_str_mv 10.1016/j.jneumeth.2004.02.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66724260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027004001001</els_id><sourcerecordid>66724260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a7fa77ac19f789afcb3a80ff4f3efb3b44dd02d9893989ac2568aae5aa441c7b3</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVJaTZJv0LQqTdvZFkr2TklhPQPhPbSQi9BjKVRo8WWtpIc2G9fLbulx8IMc_m9ebxHyHXL1i1r5c12vQ24zFhe1pwxsWa8Tv-GrNpe8Uaq_ucZWVVw0zCu2Dm5yHnLKjgw-Y6ctxsuOVNiRZ6_-pLiLwzU-pyWXfEx0Oho3gfYlVg9UsxxxnxLIVCYCqYAxb8iPXhHS0ukPscJCtIxgQ909iWalxhs8nBF3jqYMr4_3Uvy4-Pj94fPzdO3T18e7p8a00lRGlAOlALTDk71AzgzdtAz54Tr0I3dKIS1jNuhH7q6YPhG9gC4ARCiNWrsLsmH499dir8XzEXPPhucJggYl6ylVFxwySooj6CpsXJCp3fJz5D2umX6UKze6r_F6kOxmvE6fRVenxyWcUb7T3ZqsgJ3RwBrzlePSWfjMRi0PqEp2kb_P48_fFqQ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66724260</pqid></control><display><type>article</type><title>Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brown, Maile R ; Sullivan, Patrick G ; Dorenbos, Kristina A ; Modafferi, Edward A ; Geddes, James W ; Steward, Oswald</creator><creatorcontrib>Brown, Maile R ; Sullivan, Patrick G ; Dorenbos, Kristina A ; Modafferi, Edward A ; Geddes, James W ; Steward, Oswald</creatorcontrib><description>Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synaptoneurosomes and isolate both synaptic and non-synaptic mitochondria without structural or functional damage. A novel method is reported here for disruption of synaptoneurosomes and isolation of total brain mitochondria from synaptic and non-synaptic sources using a nitrogen decompression technique. Nitrogen gas was dissolved into crude mitochondrial preparations and maintained under constant, moderate pressure. After a short incubation, the pressure was released causing the nitrogen to come out of solution as growing bubbles, which ruptures cellular and synaptoneurosomal membranes. Mitochondria isolated using this rapid technique were bioenergetically competent and exhibited functional characteristics comparable to mitochondria isolated using traditional techniques. This nitrogen decompression technique will allow for further characterization of synaptic pools of mitochondria, which are almost exclusively neuronal in origin.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2004.02.028</identifier><identifier>PMID: 15262074</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Blotting, Western - methods ; Brain - cytology ; Cytological Techniques - methods ; Digitonin - pharmacology ; Electron Transport Complex IV - metabolism ; Isolation brain mitochondria ; Male ; Microscopy, Electron - methods ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Nerve Tissue Proteins - metabolism ; Nitrogen - pharmacology ; Nitrogen decompression ; Non-synaptic ; Oxygen Consumption ; Porins ; Rats ; Subcellular Fractions ; Synaptic ; Synaptosomes - drug effects ; Total ; Voltage-Dependent Anion Channels</subject><ispartof>Journal of neuroscience methods, 2004-08, Vol.137 (2), p.299-303</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a7fa77ac19f789afcb3a80ff4f3efb3b44dd02d9893989ac2568aae5aa441c7b3</citedby><cites>FETCH-LOGICAL-c364t-a7fa77ac19f789afcb3a80ff4f3efb3b44dd02d9893989ac2568aae5aa441c7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027004001001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15262074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Maile R</creatorcontrib><creatorcontrib>Sullivan, Patrick G</creatorcontrib><creatorcontrib>Dorenbos, Kristina A</creatorcontrib><creatorcontrib>Modafferi, Edward A</creatorcontrib><creatorcontrib>Geddes, James W</creatorcontrib><creatorcontrib>Steward, Oswald</creatorcontrib><title>Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synaptoneurosomes and isolate both synaptic and non-synaptic mitochondria without structural or functional damage. A novel method is reported here for disruption of synaptoneurosomes and isolation of total brain mitochondria from synaptic and non-synaptic sources using a nitrogen decompression technique. Nitrogen gas was dissolved into crude mitochondrial preparations and maintained under constant, moderate pressure. After a short incubation, the pressure was released causing the nitrogen to come out of solution as growing bubbles, which ruptures cellular and synaptoneurosomal membranes. Mitochondria isolated using this rapid technique were bioenergetically competent and exhibited functional characteristics comparable to mitochondria isolated using traditional techniques. This nitrogen decompression technique will allow for further characterization of synaptic pools of mitochondria, which are almost exclusively neuronal in origin.</description><subject>Animals</subject><subject>Blotting, Western - methods</subject><subject>Brain - cytology</subject><subject>Cytological Techniques - methods</subject><subject>Digitonin - pharmacology</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Isolation brain mitochondria</subject><subject>Male</subject><subject>Microscopy, Electron - methods</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nitrogen - pharmacology</subject><subject>Nitrogen decompression</subject><subject>Non-synaptic</subject><subject>Oxygen Consumption</subject><subject>Porins</subject><subject>Rats</subject><subject>Subcellular Fractions</subject><subject>Synaptic</subject><subject>Synaptosomes - drug effects</subject><subject>Total</subject><subject>Voltage-Dependent Anion Channels</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9r3DAQxUVJaTZJv0LQqTdvZFkr2TklhPQPhPbSQi9BjKVRo8WWtpIc2G9fLbulx8IMc_m9ebxHyHXL1i1r5c12vQ24zFhe1pwxsWa8Tv-GrNpe8Uaq_ucZWVVw0zCu2Dm5yHnLKjgw-Y6ctxsuOVNiRZ6_-pLiLwzU-pyWXfEx0Oho3gfYlVg9UsxxxnxLIVCYCqYAxb8iPXhHS0ukPscJCtIxgQ909iWalxhs8nBF3jqYMr4_3Uvy4-Pj94fPzdO3T18e7p8a00lRGlAOlALTDk71AzgzdtAz54Tr0I3dKIS1jNuhH7q6YPhG9gC4ARCiNWrsLsmH499dir8XzEXPPhucJggYl6ylVFxwySooj6CpsXJCp3fJz5D2umX6UKze6r_F6kOxmvE6fRVenxyWcUb7T3ZqsgJ3RwBrzlePSWfjMRi0PqEp2kb_P48_fFqQ2w</recordid><startdate>20040830</startdate><enddate>20040830</enddate><creator>Brown, Maile R</creator><creator>Sullivan, Patrick G</creator><creator>Dorenbos, Kristina A</creator><creator>Modafferi, Edward A</creator><creator>Geddes, James W</creator><creator>Steward, Oswald</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040830</creationdate><title>Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria</title><author>Brown, Maile R ; Sullivan, Patrick G ; Dorenbos, Kristina A ; Modafferi, Edward A ; Geddes, James W ; Steward, Oswald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a7fa77ac19f789afcb3a80ff4f3efb3b44dd02d9893989ac2568aae5aa441c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Blotting, Western - methods</topic><topic>Brain - cytology</topic><topic>Cytological Techniques - methods</topic><topic>Digitonin - pharmacology</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Isolation brain mitochondria</topic><topic>Male</topic><topic>Microscopy, Electron - methods</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nitrogen - pharmacology</topic><topic>Nitrogen decompression</topic><topic>Non-synaptic</topic><topic>Oxygen Consumption</topic><topic>Porins</topic><topic>Rats</topic><topic>Subcellular Fractions</topic><topic>Synaptic</topic><topic>Synaptosomes - drug effects</topic><topic>Total</topic><topic>Voltage-Dependent Anion Channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Maile R</creatorcontrib><creatorcontrib>Sullivan, Patrick G</creatorcontrib><creatorcontrib>Dorenbos, Kristina A</creatorcontrib><creatorcontrib>Modafferi, Edward A</creatorcontrib><creatorcontrib>Geddes, James W</creatorcontrib><creatorcontrib>Steward, Oswald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Maile R</au><au>Sullivan, Patrick G</au><au>Dorenbos, Kristina A</au><au>Modafferi, Edward A</au><au>Geddes, James W</au><au>Steward, Oswald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2004-08-30</date><risdate>2004</risdate><volume>137</volume><issue>2</issue><spage>299</spage><epage>303</epage><pages>299-303</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>Mitochondria are known to be localized in synaptic and non-synaptic compartments in the brain. Synaptoneurosomes, which contain high numbers of mitochondria, may act as a major contaminant of currently used isolation techniques. Currently, there is no method employed to successfully disrupt synaptoneurosomes and isolate both synaptic and non-synaptic mitochondria without structural or functional damage. A novel method is reported here for disruption of synaptoneurosomes and isolation of total brain mitochondria from synaptic and non-synaptic sources using a nitrogen decompression technique. Nitrogen gas was dissolved into crude mitochondrial preparations and maintained under constant, moderate pressure. After a short incubation, the pressure was released causing the nitrogen to come out of solution as growing bubbles, which ruptures cellular and synaptoneurosomal membranes. Mitochondria isolated using this rapid technique were bioenergetically competent and exhibited functional characteristics comparable to mitochondria isolated using traditional techniques. This nitrogen decompression technique will allow for further characterization of synaptic pools of mitochondria, which are almost exclusively neuronal in origin.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15262074</pmid><doi>10.1016/j.jneumeth.2004.02.028</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2004-08, Vol.137 (2), p.299-303
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_66724260
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Blotting, Western - methods
Brain - cytology
Cytological Techniques - methods
Digitonin - pharmacology
Electron Transport Complex IV - metabolism
Isolation brain mitochondria
Male
Microscopy, Electron - methods
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Nerve Tissue Proteins - metabolism
Nitrogen - pharmacology
Nitrogen decompression
Non-synaptic
Oxygen Consumption
Porins
Rats
Subcellular Fractions
Synaptic
Synaptosomes - drug effects
Total
Voltage-Dependent Anion Channels
title Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20disruption%20of%20synaptoneurosomes:%20an%20alternative%20method%20to%20isolate%20brain%20mitochondria&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Brown,%20Maile%20R&rft.date=2004-08-30&rft.volume=137&rft.issue=2&rft.spage=299&rft.epage=303&rft.pages=299-303&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2004.02.028&rft_dat=%3Cproquest_cross%3E66724260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66724260&rft_id=info:pmid/15262074&rft_els_id=S0165027004001001&rfr_iscdi=true