Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord

The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2004-08, Vol.131 (15), p.3593-3604
Hauptverfasser: Lei, Qiubo, Zelman, Alice K, Kuang, Ed, Li, Shike, Matise, Michael P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3604
container_issue 15
container_start_page 3593
container_title Development (Cambridge)
container_volume 131
creator Lei, Qiubo
Zelman, Alice K
Kuang, Ed
Li, Shike
Matise, Michael P
description The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.
doi_str_mv 10.1242/dev.01230
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66723280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66723280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhwB9APiFxyDL-jo-ogrZSJS7lbNnJJGuUjRc7KeqB_463u4hjpZHHh8ePZvwS8p7BlnHJP_f4sAXGBbwgGyaNaSzj9iXZgFXQMGvZBXlTyk8AENqY1-SCKV4LzIb8uc9-Lv3aLTHNNA10zL7Hnt5gP-IujbTEcfZTnEcaHqmnXdqHOPt_9PUUOfVzf7wI6qvlwS8p02Gdn4yFxpkuO6R1RJzS4egp9fRTNeX-LXk1-Kngu3O_JD--fb2_umnuvl_fXn25azrJzNIMLVPGSgyqUwNogxYhmAAmWDUMXnYGOvBtYAY1Z1pp5b0NUrZGoLKgxSX5ePIecvq1YlncPpYOp8nPmNbitDZc8BaeBVkL0mouK_jpBHY5lZJxcIcc9z4_OgbuGIqrG7unUCr74Sxdwx77_-Q5hQpsT8AujrvfMaMLMU1pjGUp7vxzjglWXzihrBB_AY1VmDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18049624</pqid></control><display><type>article</type><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</creator><creatorcontrib>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</creatorcontrib><description>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.01230</identifier><identifier>PMID: 15215207</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Animals ; Body Patterning ; Cell Differentiation ; Cell Lineage ; Chick Embryo ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Embryo, Mammalian - anatomy &amp; histology ; Embryo, Mammalian - physiology ; Hedgehog Proteins ; In Situ Hybridization ; Kruppel-Like Transcription Factors ; Mice ; Mice, Knockout ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons - cytology ; Neurons - physiology ; Signal Transduction - physiology ; Spinal Cord - cytology ; Spinal Cord - embryology ; Spinal Cord - physiology ; Stem Cells - cytology ; Stem Cells - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Zinc Finger Protein Gli2 ; Zinc Finger Protein Gli3</subject><ispartof>Development (Cambridge), 2004-08, Vol.131 (15), p.3593-3604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</citedby><cites>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15215207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Qiubo</creatorcontrib><creatorcontrib>Zelman, Alice K</creatorcontrib><creatorcontrib>Kuang, Ed</creatorcontrib><creatorcontrib>Li, Shike</creatorcontrib><creatorcontrib>Matise, Michael P</creatorcontrib><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</description><subject>Animals</subject><subject>Body Patterning</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Chick Embryo</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryo, Mammalian - anatomy &amp; histology</subject><subject>Embryo, Mammalian - physiology</subject><subject>Hedgehog Proteins</subject><subject>In Situ Hybridization</subject><subject>Kruppel-Like Transcription Factors</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - physiology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Zinc Finger Protein Gli2</subject><subject>Zinc Finger Protein Gli3</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhwB9APiFxyDL-jo-ogrZSJS7lbNnJJGuUjRc7KeqB_463u4hjpZHHh8ePZvwS8p7BlnHJP_f4sAXGBbwgGyaNaSzj9iXZgFXQMGvZBXlTyk8AENqY1-SCKV4LzIb8uc9-Lv3aLTHNNA10zL7Hnt5gP-IujbTEcfZTnEcaHqmnXdqHOPt_9PUUOfVzf7wI6qvlwS8p02Gdn4yFxpkuO6R1RJzS4egp9fRTNeX-LXk1-Kngu3O_JD--fb2_umnuvl_fXn25azrJzNIMLVPGSgyqUwNogxYhmAAmWDUMXnYGOvBtYAY1Z1pp5b0NUrZGoLKgxSX5ePIecvq1YlncPpYOp8nPmNbitDZc8BaeBVkL0mouK_jpBHY5lZJxcIcc9z4_OgbuGIqrG7unUCr74Sxdwx77_-Q5hQpsT8AujrvfMaMLMU1pjGUp7vxzjglWXzihrBB_AY1VmDI</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Lei, Qiubo</creator><creator>Zelman, Alice K</creator><creator>Kuang, Ed</creator><creator>Li, Shike</creator><creator>Matise, Michael P</creator><general>The Company of Biologists Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><author>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Patterning</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Chick Embryo</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryo, Mammalian - anatomy &amp; histology</topic><topic>Embryo, Mammalian - physiology</topic><topic>Hedgehog Proteins</topic><topic>In Situ Hybridization</topic><topic>Kruppel-Like Transcription Factors</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - physiology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Zinc Finger Protein Gli2</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Qiubo</creatorcontrib><creatorcontrib>Zelman, Alice K</creatorcontrib><creatorcontrib>Kuang, Ed</creatorcontrib><creatorcontrib>Li, Shike</creatorcontrib><creatorcontrib>Matise, Michael P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Qiubo</au><au>Zelman, Alice K</au><au>Kuang, Ed</au><au>Li, Shike</au><au>Matise, Michael P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>131</volume><issue>15</issue><spage>3593</spage><epage>3604</epage><pages>3593-3604</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>15215207</pmid><doi>10.1242/dev.01230</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2004-08, Vol.131 (15), p.3593-3604
issn 0950-1991
1477-9129
language eng
recordid cdi_proquest_miscellaneous_66723280
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Body Patterning
Cell Differentiation
Cell Lineage
Chick Embryo
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Embryo, Mammalian - anatomy & histology
Embryo, Mammalian - physiology
Hedgehog Proteins
In Situ Hybridization
Kruppel-Like Transcription Factors
Mice
Mice, Knockout
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurons - cytology
Neurons - physiology
Signal Transduction - physiology
Spinal Cord - cytology
Spinal Cord - embryology
Spinal Cord - physiology
Stem Cells - cytology
Stem Cells - metabolism
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Zinc Finger Protein Gli2
Zinc Finger Protein Gli3
title Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transduction%20of%20graded%20Hedgehog%20signaling%20by%20a%20combination%20of%20Gli2%20and%20Gli3%20activator%20functions%20in%20the%20developing%20spinal%20cord&rft.jtitle=Development%20(Cambridge)&rft.au=Lei,%20Qiubo&rft.date=2004-08-01&rft.volume=131&rft.issue=15&rft.spage=3593&rft.epage=3604&rft.pages=3593-3604&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.01230&rft_dat=%3Cproquest_cross%3E66723280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18049624&rft_id=info:pmid/15215207&rfr_iscdi=true