Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord
The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patter...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2004-08, Vol.131 (15), p.3593-3604 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3604 |
---|---|
container_issue | 15 |
container_start_page | 3593 |
container_title | Development (Cambridge) |
container_volume | 131 |
creator | Lei, Qiubo Zelman, Alice K Kuang, Ed Li, Shike Matise, Michael P |
description | The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation. |
doi_str_mv | 10.1242/dev.01230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66723280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66723280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhwB9APiFxyDL-jo-ogrZSJS7lbNnJJGuUjRc7KeqB_463u4hjpZHHh8ePZvwS8p7BlnHJP_f4sAXGBbwgGyaNaSzj9iXZgFXQMGvZBXlTyk8AENqY1-SCKV4LzIb8uc9-Lv3aLTHNNA10zL7Hnt5gP-IujbTEcfZTnEcaHqmnXdqHOPt_9PUUOfVzf7wI6qvlwS8p02Gdn4yFxpkuO6R1RJzS4egp9fRTNeX-LXk1-Kngu3O_JD--fb2_umnuvl_fXn25azrJzNIMLVPGSgyqUwNogxYhmAAmWDUMXnYGOvBtYAY1Z1pp5b0NUrZGoLKgxSX5ePIecvq1YlncPpYOp8nPmNbitDZc8BaeBVkL0mouK_jpBHY5lZJxcIcc9z4_OgbuGIqrG7unUCr74Sxdwx77_-Q5hQpsT8AujrvfMaMLMU1pjGUp7vxzjglWXzihrBB_AY1VmDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18049624</pqid></control><display><type>article</type><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</creator><creatorcontrib>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</creatorcontrib><description>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.01230</identifier><identifier>PMID: 15215207</identifier><language>eng</language><publisher>England: The Company of Biologists Limited</publisher><subject>Animals ; Body Patterning ; Cell Differentiation ; Cell Lineage ; Chick Embryo ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Embryo, Mammalian - anatomy & histology ; Embryo, Mammalian - physiology ; Hedgehog Proteins ; In Situ Hybridization ; Kruppel-Like Transcription Factors ; Mice ; Mice, Knockout ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons - cytology ; Neurons - physiology ; Signal Transduction - physiology ; Spinal Cord - cytology ; Spinal Cord - embryology ; Spinal Cord - physiology ; Stem Cells - cytology ; Stem Cells - metabolism ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Zinc Finger Protein Gli2 ; Zinc Finger Protein Gli3</subject><ispartof>Development (Cambridge), 2004-08, Vol.131 (15), p.3593-3604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</citedby><cites>FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15215207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Qiubo</creatorcontrib><creatorcontrib>Zelman, Alice K</creatorcontrib><creatorcontrib>Kuang, Ed</creatorcontrib><creatorcontrib>Li, Shike</creatorcontrib><creatorcontrib>Matise, Michael P</creatorcontrib><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</description><subject>Animals</subject><subject>Body Patterning</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Chick Embryo</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryo, Mammalian - anatomy & histology</subject><subject>Embryo, Mammalian - physiology</subject><subject>Hedgehog Proteins</subject><subject>In Situ Hybridization</subject><subject>Kruppel-Like Transcription Factors</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - physiology</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Zinc Finger Protein Gli2</subject><subject>Zinc Finger Protein Gli3</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhwB9APiFxyDL-jo-ogrZSJS7lbNnJJGuUjRc7KeqB_463u4hjpZHHh8ePZvwS8p7BlnHJP_f4sAXGBbwgGyaNaSzj9iXZgFXQMGvZBXlTyk8AENqY1-SCKV4LzIb8uc9-Lv3aLTHNNA10zL7Hnt5gP-IujbTEcfZTnEcaHqmnXdqHOPt_9PUUOfVzf7wI6qvlwS8p02Gdn4yFxpkuO6R1RJzS4egp9fRTNeX-LXk1-Kngu3O_JD--fb2_umnuvl_fXn25azrJzNIMLVPGSgyqUwNogxYhmAAmWDUMXnYGOvBtYAY1Z1pp5b0NUrZGoLKgxSX5ePIecvq1YlncPpYOp8nPmNbitDZc8BaeBVkL0mouK_jpBHY5lZJxcIcc9z4_OgbuGIqrG7unUCr74Sxdwx77_-Q5hQpsT8AujrvfMaMLMU1pjGUp7vxzjglWXzihrBB_AY1VmDI</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Lei, Qiubo</creator><creator>Zelman, Alice K</creator><creator>Kuang, Ed</creator><creator>Li, Shike</creator><creator>Matise, Michael P</creator><general>The Company of Biologists Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</title><author>Lei, Qiubo ; Zelman, Alice K ; Kuang, Ed ; Li, Shike ; Matise, Michael P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-f815794eb5c5f067e9e0b7b07b95ffa4c70c0a8b17e6216565aa9b44873e59063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Patterning</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Chick Embryo</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryo, Mammalian - anatomy & histology</topic><topic>Embryo, Mammalian - physiology</topic><topic>Hedgehog Proteins</topic><topic>In Situ Hybridization</topic><topic>Kruppel-Like Transcription Factors</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - physiology</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Zinc Finger Protein Gli2</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Qiubo</creatorcontrib><creatorcontrib>Zelman, Alice K</creatorcontrib><creatorcontrib>Kuang, Ed</creatorcontrib><creatorcontrib>Li, Shike</creatorcontrib><creatorcontrib>Matise, Michael P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Qiubo</au><au>Zelman, Alice K</au><au>Kuang, Ed</au><au>Li, Shike</au><au>Matise, Michael P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>131</volume><issue>15</issue><spage>3593</spage><epage>3604</epage><pages>3593-3604</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.</abstract><cop>England</cop><pub>The Company of Biologists Limited</pub><pmid>15215207</pmid><doi>10.1242/dev.01230</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2004-08, Vol.131 (15), p.3593-3604 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_proquest_miscellaneous_66723280 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Body Patterning Cell Differentiation Cell Lineage Chick Embryo DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Embryo, Mammalian - anatomy & histology Embryo, Mammalian - physiology Hedgehog Proteins In Situ Hybridization Kruppel-Like Transcription Factors Mice Mice, Knockout Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons - cytology Neurons - physiology Signal Transduction - physiology Spinal Cord - cytology Spinal Cord - embryology Spinal Cord - physiology Stem Cells - cytology Stem Cells - metabolism Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism Zinc Finger Protein Gli2 Zinc Finger Protein Gli3 |
title | Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transduction%20of%20graded%20Hedgehog%20signaling%20by%20a%20combination%20of%20Gli2%20and%20Gli3%20activator%20functions%20in%20the%20developing%20spinal%20cord&rft.jtitle=Development%20(Cambridge)&rft.au=Lei,%20Qiubo&rft.date=2004-08-01&rft.volume=131&rft.issue=15&rft.spage=3593&rft.epage=3604&rft.pages=3593-3604&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.01230&rft_dat=%3Cproquest_cross%3E66723280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18049624&rft_id=info:pmid/15215207&rfr_iscdi=true |