Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives

The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of cell biology 2004-05, Vol.83 (4), p.159-169
Hauptverfasser: Dalby, Matthew J., Riehle, Mathis O., Sutherland, Duncan S., Agheli, Hossein, Curtis, Adam S.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 4
container_start_page 159
container_title European journal of cell biology
container_volume 83
creator Dalby, Matthew J.
Riehle, Mathis O.
Sutherland, Duncan S.
Agheli, Hossein
Curtis, Adam S.G.
description The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this ‘self – induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.
doi_str_mv 10.1078/0171-9335-00369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66721302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0171933504703532</els_id><sourcerecordid>66721302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-bd2b2889ace373eba7e9407ddbd5f7f31fe765e01f52b10a10b6975ae61258343</originalsourceid><addsrcrecordid>eNp1kD1rHDEQhkWwic9OandBuEi3sT5upVUZTBIbDGnsNkJazeZk7qSNZtdwnf-D_2F-SXS-w4FAqineZ94ZHkLOOfvEme4uGde8MVK2DWNSmTdkwRXvGi5Md0QWr-kJOUV8YIy3nTFvyQlvhWJL2S3Ij3sEmgeaXMpTHvPP4sbVlk6Z4jSHLd1Av9pFxSUMcz_FnGhMdIi-ZL92OCH9_fRcsWmVA1KXAh2h4AgVfQR8R44Ht0Z4f5hn5P7rl7ur6-b2-7ebq8-3Tb-Uamp8EF50nXE9SC3BOw1myXQIPrSDHiQfQKsWGB9a4TlznHlldOtAcdF2cinPyMd971jyrxlwspuIPazXLkGe0SqlBZdMVPDiH_AhzyXV36xg9WS1xSp0uYf6khELDHYscePK1nJmd97tzqzdmbUv3uvGh0Pt7DcQ_vIH0RUwewCqhccIxWIfIfUQYqmubMjxv-V_AP-xkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204079330</pqid></control><display><type>article</type><title>Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Dalby, Matthew J. ; Riehle, Mathis O. ; Sutherland, Duncan S. ; Agheli, Hossein ; Curtis, Adam S.G.</creator><creatorcontrib>Dalby, Matthew J. ; Riehle, Mathis O. ; Sutherland, Duncan S. ; Agheli, Hossein ; Curtis, Adam S.G.</creatorcontrib><description>The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this ‘self – induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.</description><identifier>ISSN: 0171-9335</identifier><identifier>EISSN: 1618-1298</identifier><identifier>DOI: 10.1078/0171-9335-00369</identifier><identifier>PMID: 15260438</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Animals ; Cell Nucleus - metabolism ; Centromere positioning ; Cytoskeleton ; Cytoskeleton - metabolism ; Cytoskeleton - ultrastructure ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fibroblasts - ultrastructure ; Focal Adhesions ; Gene Expression Regulation ; Humans ; Mechanotransduction, Cellular - physiology ; Microarray ; Nanobioscience ; Nanotechnology - methods ; Nanotechnology - trends ; Nanotopography</subject><ispartof>European journal of cell biology, 2004-05, Vol.83 (4), p.159-169</ispartof><rights>2004 Urban &amp; Fischer Verlag</rights><rights>Copyright Urban &amp; Fischer Verlag May 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-bd2b2889ace373eba7e9407ddbd5f7f31fe765e01f52b10a10b6975ae61258343</citedby><cites>FETCH-LOGICAL-c436t-bd2b2889ace373eba7e9407ddbd5f7f31fe765e01f52b10a10b6975ae61258343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/204079330?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15260438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalby, Matthew J.</creatorcontrib><creatorcontrib>Riehle, Mathis O.</creatorcontrib><creatorcontrib>Sutherland, Duncan S.</creatorcontrib><creatorcontrib>Agheli, Hossein</creatorcontrib><creatorcontrib>Curtis, Adam S.G.</creatorcontrib><title>Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives</title><title>European journal of cell biology</title><addtitle>Eur J Cell Biol</addtitle><description>The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this ‘self – induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.</description><subject>Animals</subject><subject>Cell Nucleus - metabolism</subject><subject>Centromere positioning</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - ultrastructure</subject><subject>Focal Adhesions</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microarray</subject><subject>Nanobioscience</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology - trends</subject><subject>Nanotopography</subject><issn>0171-9335</issn><issn>1618-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1rHDEQhkWwic9OandBuEi3sT5upVUZTBIbDGnsNkJazeZk7qSNZtdwnf-D_2F-SXS-w4FAqineZ94ZHkLOOfvEme4uGde8MVK2DWNSmTdkwRXvGi5Md0QWr-kJOUV8YIy3nTFvyQlvhWJL2S3Ij3sEmgeaXMpTHvPP4sbVlk6Z4jSHLd1Av9pFxSUMcz_FnGhMdIi-ZL92OCH9_fRcsWmVA1KXAh2h4AgVfQR8R44Ht0Z4f5hn5P7rl7ur6-b2-7ebq8-3Tb-Uamp8EF50nXE9SC3BOw1myXQIPrSDHiQfQKsWGB9a4TlznHlldOtAcdF2cinPyMd971jyrxlwspuIPazXLkGe0SqlBZdMVPDiH_AhzyXV36xg9WS1xSp0uYf6khELDHYscePK1nJmd97tzqzdmbUv3uvGh0Pt7DcQ_vIH0RUwewCqhccIxWIfIfUQYqmubMjxv-V_AP-xkZw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Dalby, Matthew J.</creator><creator>Riehle, Mathis O.</creator><creator>Sutherland, Duncan S.</creator><creator>Agheli, Hossein</creator><creator>Curtis, Adam S.G.</creator><general>Elsevier GmbH</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives</title><author>Dalby, Matthew J. ; Riehle, Mathis O. ; Sutherland, Duncan S. ; Agheli, Hossein ; Curtis, Adam S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-bd2b2889ace373eba7e9407ddbd5f7f31fe765e01f52b10a10b6975ae61258343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Cell Nucleus - metabolism</topic><topic>Centromere positioning</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - ultrastructure</topic><topic>Focal Adhesions</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microarray</topic><topic>Nanobioscience</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology - trends</topic><topic>Nanotopography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalby, Matthew J.</creatorcontrib><creatorcontrib>Riehle, Mathis O.</creatorcontrib><creatorcontrib>Sutherland, Duncan S.</creatorcontrib><creatorcontrib>Agheli, Hossein</creatorcontrib><creatorcontrib>Curtis, Adam S.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalby, Matthew J.</au><au>Riehle, Mathis O.</au><au>Sutherland, Duncan S.</au><au>Agheli, Hossein</au><au>Curtis, Adam S.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives</atitle><jtitle>European journal of cell biology</jtitle><addtitle>Eur J Cell Biol</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>83</volume><issue>4</issue><spage>159</spage><epage>169</epage><pages>159-169</pages><issn>0171-9335</issn><eissn>1618-1298</eissn><abstract>The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this ‘self – induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>15260438</pmid><doi>10.1078/0171-9335-00369</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-9335
ispartof European journal of cell biology, 2004-05, Vol.83 (4), p.159-169
issn 0171-9335
1618-1298
language eng
recordid cdi_proquest_miscellaneous_66721302
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Animals
Cell Nucleus - metabolism
Centromere positioning
Cytoskeleton
Cytoskeleton - metabolism
Cytoskeleton - ultrastructure
Fibroblasts - cytology
Fibroblasts - metabolism
Fibroblasts - ultrastructure
Focal Adhesions
Gene Expression Regulation
Humans
Mechanotransduction, Cellular - physiology
Microarray
Nanobioscience
Nanotechnology - methods
Nanotechnology - trends
Nanotopography
title Use of nanotopography to study mechanotransduction in fibroblasts – methods and perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20nanotopography%20to%20study%20mechanotransduction%20in%20fibroblasts%20%E2%80%93%20methods%20and%20perspectives&rft.jtitle=European%20journal%20of%20cell%20biology&rft.au=Dalby,%20Matthew%20J.&rft.date=2004-05-01&rft.volume=83&rft.issue=4&rft.spage=159&rft.epage=169&rft.pages=159-169&rft.issn=0171-9335&rft.eissn=1618-1298&rft_id=info:doi/10.1078/0171-9335-00369&rft_dat=%3Cproquest_cross%3E66721302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204079330&rft_id=info:pmid/15260438&rft_els_id=S0171933504703532&rfr_iscdi=true