High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets

Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-12, Vol.80 (23), p.8975-8981
Hauptverfasser: Kiss, Margaret Macris, Ortoleva-Donnelly, Lori, Beer, N. Reginald, Warner, Jason, Bailey, Christopher G, Colston, Bill W, Rothberg, Jonathon M, Link, Darren R, Leamon, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8981
container_issue 23
container_start_page 8975
container_title Analytical chemistry (Washington)
container_volume 80
creator Kiss, Margaret Macris
Ortoleva-Donnelly, Lori
Beer, N. Reginald
Warner, Jason
Bailey, Christopher G
Colston, Bill W
Rothberg, Jonathon M
Link, Darren R
Leamon, John H
description Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/μL). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications.
doi_str_mv 10.1021/ac801276c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66717088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1611041311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-54e8a832b39f4b234e2dec1c9832b95ccd529f8f87888003dd13bcbd6d68b3a53</originalsourceid><addsrcrecordid>eNpl0NFu0zAUBmALgVg3uOAFUIQE0i4yju04sS9RgW2oEi0rQuLGOnGc1SONi-1M7O2XqlUrjStb9qej8_-EvKFwQYHRj2gkUFaV5hmZUMEgL6Vkz8kEAHjOKoATchrjHQClQMuX5IQqIahiakJmV-52lS9XwQ-3q82QssWAfXIJk7u32dx3D2sbMNpsukLXZz8smuR8n433uTO-c8mG7HPwm86m-Iq8aLGL9vX-PCM_v35ZTq_y2ffL6-mnWY4CVMpFYSVKzmqu2qJmvLCssYYatX1TwphGMNXKVlZSyjFC01Bem7opm1LWHAU_Ix92czfB_x1sTHrtorFdh731Q9RlWdEKpBzhuyfwzg-hH3fTjFYKZMHZiM53yAQfY7Ct3gS3xvCgKehtv_rQ72jf7gcO9do2R7kvdATv9wCjwa4N2BsXD46BKkCIbYR851xM9t_hH8MfXVa8Eno5v9G_Cv7t980C9OI4F008hvh_wUeJjpy5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217908432</pqid></control><display><type>article</type><title>High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kiss, Margaret Macris ; Ortoleva-Donnelly, Lori ; Beer, N. Reginald ; Warner, Jason ; Bailey, Christopher G ; Colston, Bill W ; Rothberg, Jonathon M ; Link, Darren R ; Leamon, John H</creator><creatorcontrib>Kiss, Margaret Macris ; Ortoleva-Donnelly, Lori ; Beer, N. Reginald ; Warner, Jason ; Bailey, Christopher G ; Colston, Bill W ; Rothberg, Jonathon M ; Link, Darren R ; Leamon, John H</creatorcontrib><description>Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/μL). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac801276c</identifier><identifier>PMID: 19551929</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adenoviridae - genetics ; Analytical chemistry ; Base Sequence ; Biological and medical sciences ; Biotechnology ; Chemical reactions ; DNA Primers - genetics ; DNA, Viral - analysis ; Equipment Design ; Fluorescent Dyes ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Genome, Viral ; In vitro gene amplification. Pcr technique ; Methods. Procedures. Technologies ; Microfluidic Analytical Techniques - economics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Oil ; Poisson distribution ; Polymerase Chain Reaction - economics ; Polymerase Chain Reaction - instrumentation ; Polymerase Chain Reaction - methods ; Polymers ; Sample Size ; Sensitivity and Specificity</subject><ispartof>Analytical chemistry (Washington), 2008-12, Vol.80 (23), p.8975-8981</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 1, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-54e8a832b39f4b234e2dec1c9832b95ccd529f8f87888003dd13bcbd6d68b3a53</citedby><cites>FETCH-LOGICAL-a509t-54e8a832b39f4b234e2dec1c9832b95ccd529f8f87888003dd13bcbd6d68b3a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac801276c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac801276c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20940555$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19551929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiss, Margaret Macris</creatorcontrib><creatorcontrib>Ortoleva-Donnelly, Lori</creatorcontrib><creatorcontrib>Beer, N. Reginald</creatorcontrib><creatorcontrib>Warner, Jason</creatorcontrib><creatorcontrib>Bailey, Christopher G</creatorcontrib><creatorcontrib>Colston, Bill W</creatorcontrib><creatorcontrib>Rothberg, Jonathon M</creatorcontrib><creatorcontrib>Link, Darren R</creatorcontrib><creatorcontrib>Leamon, John H</creatorcontrib><title>High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/μL). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications.</description><subject>Adenoviridae - genetics</subject><subject>Analytical chemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>DNA Primers - genetics</subject><subject>DNA, Viral - analysis</subject><subject>Equipment Design</subject><subject>Fluorescent Dyes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Genome, Viral</subject><subject>In vitro gene amplification. Pcr technique</subject><subject>Methods. Procedures. Technologies</subject><subject>Microfluidic Analytical Techniques - economics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Oil</subject><subject>Poisson distribution</subject><subject>Polymerase Chain Reaction - economics</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Polymers</subject><subject>Sample Size</subject><subject>Sensitivity and Specificity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0NFu0zAUBmALgVg3uOAFUIQE0i4yju04sS9RgW2oEi0rQuLGOnGc1SONi-1M7O2XqlUrjStb9qej8_-EvKFwQYHRj2gkUFaV5hmZUMEgL6Vkz8kEAHjOKoATchrjHQClQMuX5IQqIahiakJmV-52lS9XwQ-3q82QssWAfXIJk7u32dx3D2sbMNpsukLXZz8smuR8n433uTO-c8mG7HPwm86m-Iq8aLGL9vX-PCM_v35ZTq_y2ffL6-mnWY4CVMpFYSVKzmqu2qJmvLCssYYatX1TwphGMNXKVlZSyjFC01Bem7opm1LWHAU_Ix92czfB_x1sTHrtorFdh731Q9RlWdEKpBzhuyfwzg-hH3fTjFYKZMHZiM53yAQfY7Ct3gS3xvCgKehtv_rQ72jf7gcO9do2R7kvdATv9wCjwa4N2BsXD46BKkCIbYR851xM9t_hH8MfXVa8Eno5v9G_Cv7t980C9OI4F008hvh_wUeJjpy5</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kiss, Margaret Macris</creator><creator>Ortoleva-Donnelly, Lori</creator><creator>Beer, N. Reginald</creator><creator>Warner, Jason</creator><creator>Bailey, Christopher G</creator><creator>Colston, Bill W</creator><creator>Rothberg, Jonathon M</creator><creator>Link, Darren R</creator><creator>Leamon, John H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081201</creationdate><title>High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets</title><author>Kiss, Margaret Macris ; Ortoleva-Donnelly, Lori ; Beer, N. Reginald ; Warner, Jason ; Bailey, Christopher G ; Colston, Bill W ; Rothberg, Jonathon M ; Link, Darren R ; Leamon, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-54e8a832b39f4b234e2dec1c9832b95ccd529f8f87888003dd13bcbd6d68b3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenoviridae - genetics</topic><topic>Analytical chemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>DNA Primers - genetics</topic><topic>DNA, Viral - analysis</topic><topic>Equipment Design</topic><topic>Fluorescent Dyes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Genome, Viral</topic><topic>In vitro gene amplification. Pcr technique</topic><topic>Methods. Procedures. Technologies</topic><topic>Microfluidic Analytical Techniques - economics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Oil</topic><topic>Poisson distribution</topic><topic>Polymerase Chain Reaction - economics</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Polymers</topic><topic>Sample Size</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, Margaret Macris</creatorcontrib><creatorcontrib>Ortoleva-Donnelly, Lori</creatorcontrib><creatorcontrib>Beer, N. Reginald</creatorcontrib><creatorcontrib>Warner, Jason</creatorcontrib><creatorcontrib>Bailey, Christopher G</creatorcontrib><creatorcontrib>Colston, Bill W</creatorcontrib><creatorcontrib>Rothberg, Jonathon M</creatorcontrib><creatorcontrib>Link, Darren R</creatorcontrib><creatorcontrib>Leamon, John H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, Margaret Macris</au><au>Ortoleva-Donnelly, Lori</au><au>Beer, N. Reginald</au><au>Warner, Jason</au><au>Bailey, Christopher G</au><au>Colston, Bill W</au><au>Rothberg, Jonathon M</au><au>Link, Darren R</au><au>Leamon, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>80</volume><issue>23</issue><spage>8975</spage><epage>8981</epage><pages>8975-8981</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow. The oil stream conducts the droplets through alternating denaturation and annealing zones, resulting in rapid (55-s cycles) and efficient PCR amplification. Inclusion of fluorescent probes in the PCR reaction mix permits the amplification process to be monitored within individual droplets at specific locations within the microfluidic chip. We show that amplification of a 245-bp adenovirus product can be detected and quantified in 35 min at starting template concentrations as low as 1 template molecule/167 droplets (0.003 pg/μL). The frequencies of positive reactions over a range of template concentrations agree closely with the frequencies predicted by Poisson statistics, demonstrating both the accuracy and sensitivity of this platform for limiting dilution and digital PCR applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19551929</pmid><doi>10.1021/ac801276c</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-12, Vol.80 (23), p.8975-8981
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_66717088
source MEDLINE; ACS Publications
subjects Adenoviridae - genetics
Analytical chemistry
Base Sequence
Biological and medical sciences
Biotechnology
Chemical reactions
DNA Primers - genetics
DNA, Viral - analysis
Equipment Design
Fluorescent Dyes
Fundamental and applied biological sciences. Psychology
Genetic engineering
Genetic technics
Genome, Viral
In vitro gene amplification. Pcr technique
Methods. Procedures. Technologies
Microfluidic Analytical Techniques - economics
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Oil
Poisson distribution
Polymerase Chain Reaction - economics
Polymerase Chain Reaction - instrumentation
Polymerase Chain Reaction - methods
Polymers
Sample Size
Sensitivity and Specificity
title High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Quantitative%20Polymerase%20Chain%20Reaction%20in%20Picoliter%20Droplets&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kiss,%20Margaret%20Macris&rft.date=2008-12-01&rft.volume=80&rft.issue=23&rft.spage=8975&rft.epage=8981&rft.pages=8975-8981&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac801276c&rft_dat=%3Cproquest_cross%3E1611041311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217908432&rft_id=info:pmid/19551929&rfr_iscdi=true