On proteins, grids, correlations, and docking
The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techni...
Gespeichert in:
Veröffentlicht in: | Comptes rendus - Biologies 2004-05, Vol.327 (5), p.409-420 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 5 |
container_start_page | 409 |
container_title | Comptes rendus - Biologies |
container_volume | 327 |
creator | Eisenstein, Miriam Katchalski-Katzir, Ephraim |
description | The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions.
To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004). |
doi_str_mv | 10.1016/j.crvi.2004.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66713744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631069104000794</els_id><sourcerecordid>32526453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlb_gAfpRU_umu_sghcpfkGhFz2HbDJbUre7NdkW_PdmaUFPeppheN7h5UHokuCcYCLvVrkNO59TjHmOWY6xPEJjomSRMcqK47RLRjIsSzJCZzGucAqVQpyiERFUCK7oGGWLdroJXQ--jbfTZfAuDduFAI3pfTccTeumrrMfvl2eo5PaNBEuDnOC3p8e32Yv2Xzx_Dp7mGeWE9ZnFZWqJMAYUaR0pgRalUVRcAUKOwml4I5UsuTKVoChAMwo1MCssAWWtTRsgm72f1O1zy3EXq99tNA0poVuG7WUijDF-b8go4JKLlgC6R60oYsxQK03wa9N-NIE68GmXunBph5sasx0splCV4fv22oN7idy0JeA6wNgojVNHUxrffzFFZwIPNS833OQpO08BB2th9aC8wFsr13n_-rxDa9mkL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32526453</pqid></control><display><type>article</type><title>On proteins, grids, correlations, and docking</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</creator><creatorcontrib>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</creatorcontrib><description>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions.
To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</description><identifier>ISSN: 1631-0691</identifier><identifier>ISSN: 1768-3238</identifier><identifier>EISSN: 1768-3238</identifier><identifier>DOI: 10.1016/j.crvi.2004.03.006</identifier><identifier>PMID: 15255472</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Binding Sites ; Biological and medical sciences ; Fourier transformations ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; interfaces ; Intermolecular phenomena ; Models, Molecular ; Molecular biophysics ; molecular recognition ; Protein Binding ; Protein Conformation ; Proteins - chemistry ; Proteins - metabolism ; protein–protein interactions ; Static Electricity ; structure prediction</subject><ispartof>Comptes rendus - Biologies, 2004-05, Vol.327 (5), p.409-420</ispartof><rights>2004 Académie des sciences</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</citedby><cites>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631069104000794$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,776,780,788,3536,27901,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15841504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15255472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenstein, Miriam</creatorcontrib><creatorcontrib>Katchalski-Katzir, Ephraim</creatorcontrib><title>On proteins, grids, correlations, and docking</title><title>Comptes rendus - Biologies</title><addtitle>C R Biol</addtitle><description>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions.
To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</description><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Fourier transformations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>interfaces</subject><subject>Intermolecular phenomena</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>molecular recognition</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>protein–protein interactions</subject><subject>Static Electricity</subject><subject>structure prediction</subject><issn>1631-0691</issn><issn>1768-3238</issn><issn>1768-3238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlb_gAfpRU_umu_sghcpfkGhFz2HbDJbUre7NdkW_PdmaUFPeppheN7h5UHokuCcYCLvVrkNO59TjHmOWY6xPEJjomSRMcqK47RLRjIsSzJCZzGucAqVQpyiERFUCK7oGGWLdroJXQ--jbfTZfAuDduFAI3pfTccTeumrrMfvl2eo5PaNBEuDnOC3p8e32Yv2Xzx_Dp7mGeWE9ZnFZWqJMAYUaR0pgRalUVRcAUKOwml4I5UsuTKVoChAMwo1MCssAWWtTRsgm72f1O1zy3EXq99tNA0poVuG7WUijDF-b8go4JKLlgC6R60oYsxQK03wa9N-NIE68GmXunBph5sasx0splCV4fv22oN7idy0JeA6wNgojVNHUxrffzFFZwIPNS833OQpO08BB2th9aC8wFsr13n_-rxDa9mkL0</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Eisenstein, Miriam</creator><creator>Katchalski-Katzir, Ephraim</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>On proteins, grids, correlations, and docking</title><author>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Fourier transformations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>interfaces</topic><topic>Intermolecular phenomena</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>molecular recognition</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>protein–protein interactions</topic><topic>Static Electricity</topic><topic>structure prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenstein, Miriam</creatorcontrib><creatorcontrib>Katchalski-Katzir, Ephraim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Comptes rendus - Biologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenstein, Miriam</au><au>Katchalski-Katzir, Ephraim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On proteins, grids, correlations, and docking</atitle><jtitle>Comptes rendus - Biologies</jtitle><addtitle>C R Biol</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>327</volume><issue>5</issue><spage>409</spage><epage>420</epage><pages>409-420</pages><issn>1631-0691</issn><issn>1768-3238</issn><eissn>1768-3238</eissn><abstract>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions.
To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><pmid>15255472</pmid><doi>10.1016/j.crvi.2004.03.006</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-0691 |
ispartof | Comptes rendus - Biologies, 2004-05, Vol.327 (5), p.409-420 |
issn | 1631-0691 1768-3238 1768-3238 |
language | eng |
recordid | cdi_proquest_miscellaneous_66713744 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Binding Sites Biological and medical sciences Fourier transformations Fundamental and applied biological sciences. Psychology Interactions. Associations interfaces Intermolecular phenomena Models, Molecular Molecular biophysics molecular recognition Protein Binding Protein Conformation Proteins - chemistry Proteins - metabolism protein–protein interactions Static Electricity structure prediction |
title | On proteins, grids, correlations, and docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20proteins,%20grids,%20correlations,%20and%20docking&rft.jtitle=Comptes%20rendus%20-%20Biologies&rft.au=Eisenstein,%20Miriam&rft.date=2004-05-01&rft.volume=327&rft.issue=5&rft.spage=409&rft.epage=420&rft.pages=409-420&rft.issn=1631-0691&rft.eissn=1768-3238&rft_id=info:doi/10.1016/j.crvi.2004.03.006&rft_dat=%3Cproquest_cross%3E32526453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32526453&rft_id=info:pmid/15255472&rft_els_id=S1631069104000794&rfr_iscdi=true |