On proteins, grids, correlations, and docking

The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus - Biologies 2004-05, Vol.327 (5), p.409-420
Hauptverfasser: Eisenstein, Miriam, Katchalski-Katzir, Ephraim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 5
container_start_page 409
container_title Comptes rendus - Biologies
container_volume 327
creator Eisenstein, Miriam
Katchalski-Katzir, Ephraim
description The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions. To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).
doi_str_mv 10.1016/j.crvi.2004.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66713744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631069104000794</els_id><sourcerecordid>32526453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlb_gAfpRU_umu_sghcpfkGhFz2HbDJbUre7NdkW_PdmaUFPeppheN7h5UHokuCcYCLvVrkNO59TjHmOWY6xPEJjomSRMcqK47RLRjIsSzJCZzGucAqVQpyiERFUCK7oGGWLdroJXQ--jbfTZfAuDduFAI3pfTccTeumrrMfvl2eo5PaNBEuDnOC3p8e32Yv2Xzx_Dp7mGeWE9ZnFZWqJMAYUaR0pgRalUVRcAUKOwml4I5UsuTKVoChAMwo1MCssAWWtTRsgm72f1O1zy3EXq99tNA0poVuG7WUijDF-b8go4JKLlgC6R60oYsxQK03wa9N-NIE68GmXunBph5sasx0splCV4fv22oN7idy0JeA6wNgojVNHUxrffzFFZwIPNS833OQpO08BB2th9aC8wFsr13n_-rxDa9mkL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32526453</pqid></control><display><type>article</type><title>On proteins, grids, correlations, and docking</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</creator><creatorcontrib>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</creatorcontrib><description>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions. To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</description><identifier>ISSN: 1631-0691</identifier><identifier>ISSN: 1768-3238</identifier><identifier>EISSN: 1768-3238</identifier><identifier>DOI: 10.1016/j.crvi.2004.03.006</identifier><identifier>PMID: 15255472</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Binding Sites ; Biological and medical sciences ; Fourier transformations ; Fundamental and applied biological sciences. Psychology ; Interactions. Associations ; interfaces ; Intermolecular phenomena ; Models, Molecular ; Molecular biophysics ; molecular recognition ; Protein Binding ; Protein Conformation ; Proteins - chemistry ; Proteins - metabolism ; protein–protein interactions ; Static Electricity ; structure prediction</subject><ispartof>Comptes rendus - Biologies, 2004-05, Vol.327 (5), p.409-420</ispartof><rights>2004 Académie des sciences</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</citedby><cites>FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631069104000794$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,776,780,788,3536,27901,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15841504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15255472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenstein, Miriam</creatorcontrib><creatorcontrib>Katchalski-Katzir, Ephraim</creatorcontrib><title>On proteins, grids, correlations, and docking</title><title>Comptes rendus - Biologies</title><addtitle>C R Biol</addtitle><description>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions. To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</description><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Fourier transformations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interactions. Associations</subject><subject>interfaces</subject><subject>Intermolecular phenomena</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>molecular recognition</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>protein–protein interactions</subject><subject>Static Electricity</subject><subject>structure prediction</subject><issn>1631-0691</issn><issn>1768-3238</issn><issn>1768-3238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlb_gAfpRU_umu_sghcpfkGhFz2HbDJbUre7NdkW_PdmaUFPeppheN7h5UHokuCcYCLvVrkNO59TjHmOWY6xPEJjomSRMcqK47RLRjIsSzJCZzGucAqVQpyiERFUCK7oGGWLdroJXQ--jbfTZfAuDduFAI3pfTccTeumrrMfvl2eo5PaNBEuDnOC3p8e32Yv2Xzx_Dp7mGeWE9ZnFZWqJMAYUaR0pgRalUVRcAUKOwml4I5UsuTKVoChAMwo1MCssAWWtTRsgm72f1O1zy3EXq99tNA0poVuG7WUijDF-b8go4JKLlgC6R60oYsxQK03wa9N-NIE68GmXunBph5sasx0splCV4fv22oN7idy0JeA6wNgojVNHUxrffzFFZwIPNS833OQpO08BB2th9aC8wFsr13n_-rxDa9mkL0</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Eisenstein, Miriam</creator><creator>Katchalski-Katzir, Ephraim</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20040501</creationdate><title>On proteins, grids, correlations, and docking</title><author>Eisenstein, Miriam ; Katchalski-Katzir, Ephraim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b26791e331719da9e2b988847e70d6e954d1b6947cbe0e8e032efe3c5c806f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Fourier transformations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interactions. Associations</topic><topic>interfaces</topic><topic>Intermolecular phenomena</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>molecular recognition</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>protein–protein interactions</topic><topic>Static Electricity</topic><topic>structure prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenstein, Miriam</creatorcontrib><creatorcontrib>Katchalski-Katzir, Ephraim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Comptes rendus - Biologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenstein, Miriam</au><au>Katchalski-Katzir, Ephraim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On proteins, grids, correlations, and docking</atitle><jtitle>Comptes rendus - Biologies</jtitle><addtitle>C R Biol</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>327</volume><issue>5</issue><spage>409</spage><epage>420</epage><pages>409-420</pages><issn>1631-0691</issn><issn>1768-3238</issn><eissn>1768-3238</eissn><abstract>The activity of a living cell can be portrayed as a network of interactions involving proteins and nucleic acids that transfer biological information. Intervention in cellular processes requires thorough understanding of the interactions between the molecules, which can be provided by docking techniques. Docking methods attempt to predict the structures of complexes given the structures of the component molecules. We focus hereby on protein–protein docking procedures that employ grid representations of the molecules, and use correlation for searching the solution space and evaluating putative complexes. Geometric surface complementarity is the dominant descriptor in docking. Inclusion of electrostatics often improves the results of geometric docking for soluble proteins, whereas hydrophobic complementarity is more important in construction of oligomers. Using binding-site information in the scan or as a filter helps to identify and up-rank nearly correct solutions. To cite this article: M. Eisenstein, E. Katchalski-Katzir, C. R. Biologies 327 (2004).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><pmid>15255472</pmid><doi>10.1016/j.crvi.2004.03.006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1631-0691
ispartof Comptes rendus - Biologies, 2004-05, Vol.327 (5), p.409-420
issn 1631-0691
1768-3238
1768-3238
language eng
recordid cdi_proquest_miscellaneous_66713744
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Binding Sites
Biological and medical sciences
Fourier transformations
Fundamental and applied biological sciences. Psychology
Interactions. Associations
interfaces
Intermolecular phenomena
Models, Molecular
Molecular biophysics
molecular recognition
Protein Binding
Protein Conformation
Proteins - chemistry
Proteins - metabolism
protein–protein interactions
Static Electricity
structure prediction
title On proteins, grids, correlations, and docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20proteins,%20grids,%20correlations,%20and%20docking&rft.jtitle=Comptes%20rendus%20-%20Biologies&rft.au=Eisenstein,%20Miriam&rft.date=2004-05-01&rft.volume=327&rft.issue=5&rft.spage=409&rft.epage=420&rft.pages=409-420&rft.issn=1631-0691&rft.eissn=1768-3238&rft_id=info:doi/10.1016/j.crvi.2004.03.006&rft_dat=%3Cproquest_cross%3E32526453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32526453&rft_id=info:pmid/15255472&rft_els_id=S1631069104000794&rfr_iscdi=true