A Family of Acrp30/Adiponectin Structural and Functional Paralogs
Biochemical, genetic, and animal studies in recent years have established a critical role for the adipokine Acrp30/adiponectin in controlling whole-body metabolism, particularly by enhancing insulin sensitivity in muscle and liver, and by increasing fatty acid oxidation in muscle. We describe a wide...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-07, Vol.101 (28), p.10302-10307 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biochemical, genetic, and animal studies in recent years have established a critical role for the adipokine Acrp30/adiponectin in controlling whole-body metabolism, particularly by enhancing insulin sensitivity in muscle and liver, and by increasing fatty acid oxidation in muscle. We describe a widely expressed and highly conserved family of adiponectin paralogs designated as C1q/tumor necrosis factor-α-related proteins (CTRPs) 1-7. In the present study, we focus on mCTRP2, the mouse paralog most similar to adiponectin. At nanomolar concentrations, bacterially produced mCTRP2 rapidly induced phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and mitogen-activated protein kinase in C2C12 myotubes, which resulted in increased glycogen accumulation and fatty acid oxidation. The discovery of a family of adiponectin paralogs has implications for understanding the control of energy homeostasis and could provide new targets for pharmacologic intervention in metabolic diseases such as diabetes and obesity. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0403760101 |