β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro

Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2008-11, Vol.56 (22), p.10533-10543
Hauptverfasser: Martinez-Villaluenga, Cristina, Bringe, Neal A, Berhow, Mark A, Gonzalez de Mejia, Elvira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10543
container_issue 22
container_start_page 10533
container_title Journal of agricultural and food chemistry
container_volume 56
creator Martinez-Villaluenga, Cristina
Bringe, Neal A
Berhow, Mark A
Gonzalez de Mejia, Elvira
description Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 ± 3.3% of total protein as β-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 ± 1.5% of extracted total protein as β-conglycinin. Moreover, after in vitro simulated digestion with pepsin−pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R 2 = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, β-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing β-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.
doi_str_mv 10.1021/jf802216b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66694878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66694878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-ffb2719871e9fb5a4c36e337b23ddf818f23dfc1ea1e428ce46c6b1779b72b403</originalsourceid><addsrcrecordid>eNpt0d1uFCEUB3BiNHatXvgCOjeaeDHKgRlgLrebVms32tht4x0BBlrW-ViBadzX8kF8JjG72d54BeH8ziH8Qegl4PeACXxYO4EJAaYfoRnUBJc1gHiMZjgXS1EzOELPYlxjjEXN8VN0BKKpOKHVDJk_v8vFONx2W-MHPxSnvbZtLOYm-XtbXNpN8q2NxepOpeJ8uPPap2LpN77NxEz91Knkx6HInXRFyyUU89ZvRrNNuSkf3vgUxufoiVNdtC_26zG6PjtdLT6Vy68fzxfzZakqXKfSOU04NIKDbZyuVWUos5RyTWjbOgHC5Y0zYBXYighjK2aYBs4bzYmuMD1Gb3dzN2H8OdmYZO-jsV2nBjtOUTLGmkpwkeG7HTRhjDFYJzfB9ypsJWD5L1F5SDTbV_uhk-5t-yD3EWbwZg9UNKpzQQ3Gx4MjWDSUMpZduXM-JvvrUFfhh2Sc8lquLq_kl4uTb98XF5_lTfavd96pUarbkGdeXxEMFEP-xAbXDzcrE-V6nMKQ0_3PE_4Cy8KiBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66694878</pqid></control><display><type>article</type><title>β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro</title><source>MEDLINE</source><source>ACS Publications</source><creator>Martinez-Villaluenga, Cristina ; Bringe, Neal A ; Berhow, Mark A ; Gonzalez de Mejia, Elvira</creator><creatorcontrib>Martinez-Villaluenga, Cristina ; Bringe, Neal A ; Berhow, Mark A ; Gonzalez de Mejia, Elvira</creatorcontrib><description>Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 ± 3.3% of total protein as β-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 ± 1.5% of extracted total protein as β-conglycinin. Moreover, after in vitro simulated digestion with pepsin−pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R 2 = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, β-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing β-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf802216b</identifier><identifier>PMID: 18947234</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>3T3-L1 adipocytes ; 3T3-L1 Cells ; adipocytes ; Adipocytes - drug effects ; Adipocytes - metabolism ; adiponectin ; Adiponectin - biosynthesis ; alcalase hydrolysis ; Animal, plant, fungal and microbial proteins, edible seaweeds and food yeasts ; Animals ; Antigens, Plant ; beta-conglycinin ; Bioactive Constituents ; Biological and medical sciences ; Food industries ; Fundamental and applied biological sciences. Psychology ; Genotype ; Globulins - analysis ; Globulins - chemistry ; Globulins - pharmacology ; Glycine max - chemistry ; Glycine max - genetics ; glycinin ; Hydrolysis ; lipid metabolism ; Lipid Metabolism - drug effects ; lipogenesis ; Mice ; peptides ; protein hydrolysates ; Seed Storage Proteins - analysis ; Seed Storage Proteins - chemistry ; Seed Storage Proteins - pharmacology ; soy peptides ; soy protein ; soy protein hydrolysates ; Soybean Proteins - analysis ; Soybean Proteins - chemistry ; Soybean Proteins - pharmacology ; soybeans ; Subtilisins - metabolism ; varieties ; β-Conglycinin</subject><ispartof>Journal of agricultural and food chemistry, 2008-11, Vol.56 (22), p.10533-10543</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-ffb2719871e9fb5a4c36e337b23ddf818f23dfc1ea1e428ce46c6b1779b72b403</citedby><cites>FETCH-LOGICAL-a405t-ffb2719871e9fb5a4c36e337b23ddf818f23dfc1ea1e428ce46c6b1779b72b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf802216b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf802216b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20893366$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18947234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Villaluenga, Cristina</creatorcontrib><creatorcontrib>Bringe, Neal A</creatorcontrib><creatorcontrib>Berhow, Mark A</creatorcontrib><creatorcontrib>Gonzalez de Mejia, Elvira</creatorcontrib><title>β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 ± 3.3% of total protein as β-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 ± 1.5% of extracted total protein as β-conglycinin. Moreover, after in vitro simulated digestion with pepsin−pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R 2 = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, β-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing β-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.</description><subject>3T3-L1 adipocytes</subject><subject>3T3-L1 Cells</subject><subject>adipocytes</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>adiponectin</subject><subject>Adiponectin - biosynthesis</subject><subject>alcalase hydrolysis</subject><subject>Animal, plant, fungal and microbial proteins, edible seaweeds and food yeasts</subject><subject>Animals</subject><subject>Antigens, Plant</subject><subject>beta-conglycinin</subject><subject>Bioactive Constituents</subject><subject>Biological and medical sciences</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype</subject><subject>Globulins - analysis</subject><subject>Globulins - chemistry</subject><subject>Globulins - pharmacology</subject><subject>Glycine max - chemistry</subject><subject>Glycine max - genetics</subject><subject>glycinin</subject><subject>Hydrolysis</subject><subject>lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>lipogenesis</subject><subject>Mice</subject><subject>peptides</subject><subject>protein hydrolysates</subject><subject>Seed Storage Proteins - analysis</subject><subject>Seed Storage Proteins - chemistry</subject><subject>Seed Storage Proteins - pharmacology</subject><subject>soy peptides</subject><subject>soy protein</subject><subject>soy protein hydrolysates</subject><subject>Soybean Proteins - analysis</subject><subject>Soybean Proteins - chemistry</subject><subject>Soybean Proteins - pharmacology</subject><subject>soybeans</subject><subject>Subtilisins - metabolism</subject><subject>varieties</subject><subject>β-Conglycinin</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0d1uFCEUB3BiNHatXvgCOjeaeDHKgRlgLrebVms32tht4x0BBlrW-ViBadzX8kF8JjG72d54BeH8ziH8Qegl4PeACXxYO4EJAaYfoRnUBJc1gHiMZjgXS1EzOELPYlxjjEXN8VN0BKKpOKHVDJk_v8vFONx2W-MHPxSnvbZtLOYm-XtbXNpN8q2NxepOpeJ8uPPap2LpN77NxEz91Knkx6HInXRFyyUU89ZvRrNNuSkf3vgUxufoiVNdtC_26zG6PjtdLT6Vy68fzxfzZakqXKfSOU04NIKDbZyuVWUos5RyTWjbOgHC5Y0zYBXYighjK2aYBs4bzYmuMD1Gb3dzN2H8OdmYZO-jsV2nBjtOUTLGmkpwkeG7HTRhjDFYJzfB9ypsJWD5L1F5SDTbV_uhk-5t-yD3EWbwZg9UNKpzQQ3Gx4MjWDSUMpZduXM-JvvrUFfhh2Sc8lquLq_kl4uTb98XF5_lTfavd96pUarbkGdeXxEMFEP-xAbXDzcrE-V6nMKQ0_3PE_4Cy8KiBw</recordid><startdate>20081126</startdate><enddate>20081126</enddate><creator>Martinez-Villaluenga, Cristina</creator><creator>Bringe, Neal A</creator><creator>Berhow, Mark A</creator><creator>Gonzalez de Mejia, Elvira</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081126</creationdate><title>β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro</title><author>Martinez-Villaluenga, Cristina ; Bringe, Neal A ; Berhow, Mark A ; Gonzalez de Mejia, Elvira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-ffb2719871e9fb5a4c36e337b23ddf818f23dfc1ea1e428ce46c6b1779b72b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3T3-L1 adipocytes</topic><topic>3T3-L1 Cells</topic><topic>adipocytes</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>adiponectin</topic><topic>Adiponectin - biosynthesis</topic><topic>alcalase hydrolysis</topic><topic>Animal, plant, fungal and microbial proteins, edible seaweeds and food yeasts</topic><topic>Animals</topic><topic>Antigens, Plant</topic><topic>beta-conglycinin</topic><topic>Bioactive Constituents</topic><topic>Biological and medical sciences</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype</topic><topic>Globulins - analysis</topic><topic>Globulins - chemistry</topic><topic>Globulins - pharmacology</topic><topic>Glycine max - chemistry</topic><topic>Glycine max - genetics</topic><topic>glycinin</topic><topic>Hydrolysis</topic><topic>lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>lipogenesis</topic><topic>Mice</topic><topic>peptides</topic><topic>protein hydrolysates</topic><topic>Seed Storage Proteins - analysis</topic><topic>Seed Storage Proteins - chemistry</topic><topic>Seed Storage Proteins - pharmacology</topic><topic>soy peptides</topic><topic>soy protein</topic><topic>soy protein hydrolysates</topic><topic>Soybean Proteins - analysis</topic><topic>Soybean Proteins - chemistry</topic><topic>Soybean Proteins - pharmacology</topic><topic>soybeans</topic><topic>Subtilisins - metabolism</topic><topic>varieties</topic><topic>β-Conglycinin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Villaluenga, Cristina</creatorcontrib><creatorcontrib>Bringe, Neal A</creatorcontrib><creatorcontrib>Berhow, Mark A</creatorcontrib><creatorcontrib>Gonzalez de Mejia, Elvira</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Villaluenga, Cristina</au><au>Bringe, Neal A</au><au>Berhow, Mark A</au><au>Gonzalez de Mejia, Elvira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2008-11-26</date><risdate>2008</risdate><volume>56</volume><issue>22</issue><spage>10533</spage><epage>10543</epage><pages>10533-10543</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Obesity is a worldwide health concern because it is a well-recognized predictor of premature mortality. The objective was to identify soybean varieties that have improved potential to inhibit fat accumulation in adipocytes by testing the effects of soy hydrolysates having a range of protein subunit compositions on lipid accumulation and adiponectin expression in 3T3-L1 adipocytes. The results showed that differences in the protein distribution of 15 soy genotypes led to different potentials for the reduction of fat accumulation. The inhibition of lipid accumulation of soy alcalase hydrolysates in 3T3-L1 adipocytes ranged from 29 to 46%. Soy hydrolysates made from genotypes with 45.3 ± 3.3% of total protein as β-conglycinin, on average, showed significantly higher inhibition of lipid accumulation compared to those with 24.7 ± 1.5% of extracted total protein as β-conglycinin. Moreover, after in vitro simulated digestion with pepsin−pancreatin of the soy alcalase hydrolysates, 86% of the original activity remained. Adiponectin expression was induced in 3T3-L1 adipocytes treated with 15 soy hydrolysates up to 2.49- and 2.63-fold for high and low molecular weight adiponectin, respectively. The inhibition of lipid accumulation calculated from a partial least squares (PLS) analysis model correlated well with experimental data (R 2 = 0.91). In conclusion, it was feasible to differentiate soy varieties on the basis of the potential of their proteins to reduce fat accumulation using a statistical model and a cell-based assay in vitro. Furthermore, β-conglycinin embeds more peptides than glycinin subunits that inhibit lipid accumulation and induce adiponectin in 3T3-L1 adipocytes. Therefore, soy ingredients containing β-conglycinin may be important food components for the control of lipid accumulation in adipose tissue.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18947234</pmid><doi>10.1021/jf802216b</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2008-11, Vol.56 (22), p.10533-10543
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_66694878
source MEDLINE; ACS Publications
subjects 3T3-L1 adipocytes
3T3-L1 Cells
adipocytes
Adipocytes - drug effects
Adipocytes - metabolism
adiponectin
Adiponectin - biosynthesis
alcalase hydrolysis
Animal, plant, fungal and microbial proteins, edible seaweeds and food yeasts
Animals
Antigens, Plant
beta-conglycinin
Bioactive Constituents
Biological and medical sciences
Food industries
Fundamental and applied biological sciences. Psychology
Genotype
Globulins - analysis
Globulins - chemistry
Globulins - pharmacology
Glycine max - chemistry
Glycine max - genetics
glycinin
Hydrolysis
lipid metabolism
Lipid Metabolism - drug effects
lipogenesis
Mice
peptides
protein hydrolysates
Seed Storage Proteins - analysis
Seed Storage Proteins - chemistry
Seed Storage Proteins - pharmacology
soy peptides
soy protein
soy protein hydrolysates
Soybean Proteins - analysis
Soybean Proteins - chemistry
Soybean Proteins - pharmacology
soybeans
Subtilisins - metabolism
varieties
β-Conglycinin
title β-Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-Conglycinin%20Embeds%20Active%20Peptides%20That%20Inhibit%20Lipid%20Accumulation%20in%203T3-L1%20Adipocytes%20in%20Vitro&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Martinez-Villaluenga,%20Cristina&rft.date=2008-11-26&rft.volume=56&rft.issue=22&rft.spage=10533&rft.epage=10543&rft.pages=10533-10543&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf802216b&rft_dat=%3Cproquest_cross%3E66694878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66694878&rft_id=info:pmid/18947234&rfr_iscdi=true