Gold Nanorod Arrays as Plasmonic Cavity Resonators

Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k z ). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2008-12, Vol.2 (12), p.2569-2576
Hauptverfasser: Lyvers, David P, Moon, Jeong-Mi, Kildishev, Alexander V, Shalaev, Vladimir M, Wei, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2576
container_issue 12
container_start_page 2569
container_title ACS nano
container_volume 2
creator Lyvers, David P
Moon, Jeong-Mi
Kildishev, Alexander V
Shalaev, Vladimir M
Wei, Alexander
description Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k z ). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions vary with nanorod height and the dielectric medium. Simulations using 3D finite-element method calculations reveal harmonic sets of longitudinal standing waves in cavities between nanorods, reminiscent of acoustic waves generated by musical instruments. The nodes and antinodes of these quarter-wave plasmon modes are bounded, respectively, at the base and tips of the array. The number of harmonic resonances and their frequencies can be adjusted as a function of nanorod height, diameter-spacing ratio, and the refractive index of the host medium. Dispersion relations based on these standing-wave modes show strong retardation effects, attributed to the coupling of nanorods via transverse modes. Removal of the metal baseplate is predicted to result in resonant transmission through the Au nanorod arrays, at frequencies defined by half-wave modes within the open-ended cavities.
doi_str_mv 10.1021/nn8006477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66678563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66678563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-d807265a8a453a732e4883cbac9ccd149007a403d4098a65c7bd7b9cfe45433</originalsourceid><addsrcrecordid>eNptkE9LwzAYh4Mobk4PfgHpRcFDNWn-H0fRKQwV9eAtvE0y6GibmbTCvr0bG_Pi6X0PDw_8HoQuCb4juCD3XacwFkzKIzQmmoocK_F1fPg5GaGzlJYYc6mkOEUjogssCk3HqJiFxmUv0IUYXDaNEdYpg5S9NZDa0NU2K-Gn7tfZu0-hgz7EdI5OFtAkf7G_E_Tx-PBZPuXz19lzOZ3nQKXuc6ewLAQHBYxTkLTwTClqK7DaWkeYxlgCw9QxrBUIbmXlZKXtwjPOKJ2gm511FcP34FNv2jpZ3zTQ-TAkI4SQiosteLsDbQwpRb8wq1i3ENeGYLPNYw55NuzVXjpUrXd_5L7HBrjeAWCTWYYhdpuF_4h-AdXMaho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66678563</pqid></control><display><type>article</type><title>Gold Nanorod Arrays as Plasmonic Cavity Resonators</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lyvers, David P ; Moon, Jeong-Mi ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Wei, Alexander</creator><creatorcontrib>Lyvers, David P ; Moon, Jeong-Mi ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Wei, Alexander</creatorcontrib><description>Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k z ). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions vary with nanorod height and the dielectric medium. Simulations using 3D finite-element method calculations reveal harmonic sets of longitudinal standing waves in cavities between nanorods, reminiscent of acoustic waves generated by musical instruments. The nodes and antinodes of these quarter-wave plasmon modes are bounded, respectively, at the base and tips of the array. The number of harmonic resonances and their frequencies can be adjusted as a function of nanorod height, diameter-spacing ratio, and the refractive index of the host medium. Dispersion relations based on these standing-wave modes show strong retardation effects, attributed to the coupling of nanorods via transverse modes. Removal of the metal baseplate is predicted to result in resonant transmission through the Au nanorod arrays, at frequencies defined by half-wave modes within the open-ended cavities.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn8006477</identifier><identifier>PMID: 19206293</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Gold - chemistry ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotubes - chemistry ; Optics and Photonics ; Surface Plasmon Resonance - methods</subject><ispartof>ACS nano, 2008-12, Vol.2 (12), p.2569-2576</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-d807265a8a453a732e4883cbac9ccd149007a403d4098a65c7bd7b9cfe45433</citedby><cites>FETCH-LOGICAL-a379t-d807265a8a453a732e4883cbac9ccd149007a403d4098a65c7bd7b9cfe45433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn8006477$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn8006477$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19206293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyvers, David P</creatorcontrib><creatorcontrib>Moon, Jeong-Mi</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Wei, Alexander</creatorcontrib><title>Gold Nanorod Arrays as Plasmonic Cavity Resonators</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k z ). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions vary with nanorod height and the dielectric medium. Simulations using 3D finite-element method calculations reveal harmonic sets of longitudinal standing waves in cavities between nanorods, reminiscent of acoustic waves generated by musical instruments. The nodes and antinodes of these quarter-wave plasmon modes are bounded, respectively, at the base and tips of the array. The number of harmonic resonances and their frequencies can be adjusted as a function of nanorod height, diameter-spacing ratio, and the refractive index of the host medium. Dispersion relations based on these standing-wave modes show strong retardation effects, attributed to the coupling of nanorods via transverse modes. Removal of the metal baseplate is predicted to result in resonant transmission through the Au nanorod arrays, at frequencies defined by half-wave modes within the open-ended cavities.</description><subject>Gold - chemistry</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - chemistry</subject><subject>Optics and Photonics</subject><subject>Surface Plasmon Resonance - methods</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE9LwzAYh4Mobk4PfgHpRcFDNWn-H0fRKQwV9eAtvE0y6GibmbTCvr0bG_Pi6X0PDw_8HoQuCb4juCD3XacwFkzKIzQmmoocK_F1fPg5GaGzlJYYc6mkOEUjogssCk3HqJiFxmUv0IUYXDaNEdYpg5S9NZDa0NU2K-Gn7tfZu0-hgz7EdI5OFtAkf7G_E_Tx-PBZPuXz19lzOZ3nQKXuc6ewLAQHBYxTkLTwTClqK7DaWkeYxlgCw9QxrBUIbmXlZKXtwjPOKJ2gm511FcP34FNv2jpZ3zTQ-TAkI4SQiosteLsDbQwpRb8wq1i3ENeGYLPNYw55NuzVXjpUrXd_5L7HBrjeAWCTWYYhdpuF_4h-AdXMaho</recordid><startdate>20081223</startdate><enddate>20081223</enddate><creator>Lyvers, David P</creator><creator>Moon, Jeong-Mi</creator><creator>Kildishev, Alexander V</creator><creator>Shalaev, Vladimir M</creator><creator>Wei, Alexander</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081223</creationdate><title>Gold Nanorod Arrays as Plasmonic Cavity Resonators</title><author>Lyvers, David P ; Moon, Jeong-Mi ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Wei, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-d807265a8a453a732e4883cbac9ccd149007a403d4098a65c7bd7b9cfe45433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Gold - chemistry</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - chemistry</topic><topic>Optics and Photonics</topic><topic>Surface Plasmon Resonance - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyvers, David P</creatorcontrib><creatorcontrib>Moon, Jeong-Mi</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Wei, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyvers, David P</au><au>Moon, Jeong-Mi</au><au>Kildishev, Alexander V</au><au>Shalaev, Vladimir M</au><au>Wei, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanorod Arrays as Plasmonic Cavity Resonators</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2008-12-23</date><risdate>2008</risdate><volume>2</volume><issue>12</issue><spage>2569</spage><epage>2576</epage><pages>2569-2576</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hexagonal 2D arrays of Au nanorods support discrete plasmon resonance modes at visible and near-infrared wavelengths when coupled with light at normal incidence (k z ). Reflectance spectra of nanorod arrays mounted on a thin Au baseplate reveal multiple resonant attenuations whose spectral positions vary with nanorod height and the dielectric medium. Simulations using 3D finite-element method calculations reveal harmonic sets of longitudinal standing waves in cavities between nanorods, reminiscent of acoustic waves generated by musical instruments. The nodes and antinodes of these quarter-wave plasmon modes are bounded, respectively, at the base and tips of the array. The number of harmonic resonances and their frequencies can be adjusted as a function of nanorod height, diameter-spacing ratio, and the refractive index of the host medium. Dispersion relations based on these standing-wave modes show strong retardation effects, attributed to the coupling of nanorods via transverse modes. Removal of the metal baseplate is predicted to result in resonant transmission through the Au nanorod arrays, at frequencies defined by half-wave modes within the open-ended cavities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19206293</pmid><doi>10.1021/nn8006477</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2008-12, Vol.2 (12), p.2569-2576
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_66678563
source MEDLINE; ACS Publications
subjects Gold - chemistry
Nanotechnology - instrumentation
Nanotechnology - methods
Nanotubes - chemistry
Optics and Photonics
Surface Plasmon Resonance - methods
title Gold Nanorod Arrays as Plasmonic Cavity Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanorod%20Arrays%20as%20Plasmonic%20Cavity%20Resonators&rft.jtitle=ACS%20nano&rft.au=Lyvers,%20David%20P&rft.date=2008-12-23&rft.volume=2&rft.issue=12&rft.spage=2569&rft.epage=2576&rft.pages=2569-2576&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn8006477&rft_dat=%3Cproquest_cross%3E66678563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66678563&rft_id=info:pmid/19206293&rfr_iscdi=true