Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies
Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisini...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2008-09, Vol.24 (5), p.1026-1032 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 5 |
container_start_page | 1026 |
container_title | Biotechnology progress |
container_volume | 24 |
creator | Lenihan, Jacob R Tsuruta, Hiroko Diola, Don Renninger, Neil S Regentin, Rika |
description | Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L. |
doi_str_mv | 10.1002/btpr.27 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66674870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20763875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</originalsourceid><addsrcrecordid>eNqF0c1u1DAQB_AIgehSEG8AuQAHlOKPxHaOpQsFURVEt-rRmjjjYsgXtlPo0_CqeJtVkZAQJ19-858ZT5Y9puSAEsJeNXHyB0zeyVa0YqQQhPO72UrJShSy5movexDCV0KIIoLdz_ZoTeuypmSV_VrjFXbj5IbLHIbcDe0confQ5eAj9i64wZkcjGtzi77HIUJ045BPfjQYQh7HPMzTNPqYxy-YmzHEAq1FE90VblU7m5uC0ab86Hro4K_4oWggYJtq-8YNS3zK8jA5DA-zexa6gI927352_vbN5uhdcfLx-P3R4UlhKi5lUSvBbV2BrRm23ELLjaDWVopDyaqKGcYESsC2hJpxJWjZ1GUjDTDVcsWR72fPl9w08vcZQ9RpOINdBwOOc9BCCFkqSf4LGZGCp49P8MUCjR9D8Gj15NP6_lpTordH09ujaSaTfLKLnJse2z9ud6UEnu0ABAOd9TAYF24dIyrtVNfJvVzcD9fh9b_66debT59v2haLdiHiz1sN_psWkstKX5we6_WHs9M1vyj1Jvmni7cwarj0aYLzM0YoJ1RQxpTivwEz9crk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20763875</pqid></control><display><type>article</type><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</creator><creatorcontrib>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</creatorcontrib><description>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.27</identifier><identifier>PMID: 19194910</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ACT ; Antimalarials - metabolism ; Antimalarials - pharmacology ; artemisinic acid ; artemisinin ; Artemisinins - metabolism ; Artemisinins - pharmacology ; Biological and medical sciences ; Bioreactors ; biosynthesis ; Biotechnology ; Cost-Benefit Analysis ; dissolved oxygen ; Drug Therapy, Combination ; Fermentation ; Fundamental and applied biological sciences. Psychology ; genetically engineered microorganisms ; Industrial Microbiology - methods ; isoprenoid ; metabolism ; methionine ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; nutrient availability ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Time Factors</subject><ispartof>Biotechnology progress, 2008-09, Vol.24 (5), p.1026-1032</ispartof><rights>Copyright © 2008 American Institute of Chemical Engineers (AIChE)</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</citedby><cites>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.27$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.27$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20823899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19194910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenihan, Jacob R</creatorcontrib><creatorcontrib>Tsuruta, Hiroko</creatorcontrib><creatorcontrib>Diola, Don</creatorcontrib><creatorcontrib>Renninger, Neil S</creatorcontrib><creatorcontrib>Regentin, Rika</creatorcontrib><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</description><subject>ACT</subject><subject>Antimalarials - metabolism</subject><subject>Antimalarials - pharmacology</subject><subject>artemisinic acid</subject><subject>artemisinin</subject><subject>Artemisinins - metabolism</subject><subject>Artemisinins - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>biosynthesis</subject><subject>Biotechnology</subject><subject>Cost-Benefit Analysis</subject><subject>dissolved oxygen</subject><subject>Drug Therapy, Combination</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetically engineered microorganisms</subject><subject>Industrial Microbiology - methods</subject><subject>isoprenoid</subject><subject>metabolism</subject><subject>methionine</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>nutrient availability</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Time Factors</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAQB_AIgehSEG8AuQAHlOKPxHaOpQsFURVEt-rRmjjjYsgXtlPo0_CqeJtVkZAQJ19-858ZT5Y9puSAEsJeNXHyB0zeyVa0YqQQhPO72UrJShSy5movexDCV0KIIoLdz_ZoTeuypmSV_VrjFXbj5IbLHIbcDe0confQ5eAj9i64wZkcjGtzi77HIUJ045BPfjQYQh7HPMzTNPqYxy-YmzHEAq1FE90VblU7m5uC0ab86Hro4K_4oWggYJtq-8YNS3zK8jA5DA-zexa6gI927352_vbN5uhdcfLx-P3R4UlhKi5lUSvBbV2BrRm23ELLjaDWVopDyaqKGcYESsC2hJpxJWjZ1GUjDTDVcsWR72fPl9w08vcZQ9RpOINdBwOOc9BCCFkqSf4LGZGCp49P8MUCjR9D8Gj15NP6_lpTordH09ujaSaTfLKLnJse2z9ud6UEnu0ABAOd9TAYF24dIyrtVNfJvVzcD9fh9b_66debT59v2haLdiHiz1sN_psWkstKX5we6_WHs9M1vyj1Jvmni7cwarj0aYLzM0YoJ1RQxpTivwEz9crk</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Lenihan, Jacob R</creator><creator>Tsuruta, Hiroko</creator><creator>Diola, Don</creator><creator>Renninger, Neil S</creator><creator>Regentin, Rika</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><author>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACT</topic><topic>Antimalarials - metabolism</topic><topic>Antimalarials - pharmacology</topic><topic>artemisinic acid</topic><topic>artemisinin</topic><topic>Artemisinins - metabolism</topic><topic>Artemisinins - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>biosynthesis</topic><topic>Biotechnology</topic><topic>Cost-Benefit Analysis</topic><topic>dissolved oxygen</topic><topic>Drug Therapy, Combination</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetically engineered microorganisms</topic><topic>Industrial Microbiology - methods</topic><topic>isoprenoid</topic><topic>metabolism</topic><topic>methionine</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>nutrient availability</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenihan, Jacob R</creatorcontrib><creatorcontrib>Tsuruta, Hiroko</creatorcontrib><creatorcontrib>Diola, Don</creatorcontrib><creatorcontrib>Renninger, Neil S</creatorcontrib><creatorcontrib>Regentin, Rika</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenihan, Jacob R</au><au>Tsuruta, Hiroko</au><au>Diola, Don</au><au>Renninger, Neil S</au><au>Regentin, Rika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2008-09</date><risdate>2008</risdate><volume>24</volume><issue>5</issue><spage>1026</spage><epage>1032</epage><pages>1026-1032</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19194910</pmid><doi>10.1002/btpr.27</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2008-09, Vol.24 (5), p.1026-1032 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_66674870 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | ACT Antimalarials - metabolism Antimalarials - pharmacology artemisinic acid artemisinin Artemisinins - metabolism Artemisinins - pharmacology Biological and medical sciences Bioreactors biosynthesis Biotechnology Cost-Benefit Analysis dissolved oxygen Drug Therapy, Combination Fermentation Fundamental and applied biological sciences. Psychology genetically engineered microorganisms Industrial Microbiology - methods isoprenoid metabolism methionine Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology nutrient availability Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Time Factors |
title | Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20an%20industrial%20artemisinic%20acid%20fermentation%20process%20to%20support%20the%20cost-effective%20production%20of%20antimalarial%20artemisinin-based%20combination%20therapies&rft.jtitle=Biotechnology%20progress&rft.au=Lenihan,%20Jacob%20R&rft.date=2008-09&rft.volume=24&rft.issue=5&rft.spage=1026&rft.epage=1032&rft.pages=1026-1032&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.27&rft_dat=%3Cproquest_cross%3E20763875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20763875&rft_id=info:pmid/19194910&rfr_iscdi=true |