Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies

Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2008-09, Vol.24 (5), p.1026-1032
Hauptverfasser: Lenihan, Jacob R, Tsuruta, Hiroko, Diola, Don, Renninger, Neil S, Regentin, Rika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1032
container_issue 5
container_start_page 1026
container_title Biotechnology progress
container_volume 24
creator Lenihan, Jacob R
Tsuruta, Hiroko
Diola, Don
Renninger, Neil S
Regentin, Rika
description Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.
doi_str_mv 10.1002/btpr.27
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66674870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20763875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</originalsourceid><addsrcrecordid>eNqF0c1u1DAQB_AIgehSEG8AuQAHlOKPxHaOpQsFURVEt-rRmjjjYsgXtlPo0_CqeJtVkZAQJ19-858ZT5Y9puSAEsJeNXHyB0zeyVa0YqQQhPO72UrJShSy5movexDCV0KIIoLdz_ZoTeuypmSV_VrjFXbj5IbLHIbcDe0confQ5eAj9i64wZkcjGtzi77HIUJ045BPfjQYQh7HPMzTNPqYxy-YmzHEAq1FE90VblU7m5uC0ab86Hro4K_4oWggYJtq-8YNS3zK8jA5DA-zexa6gI927352_vbN5uhdcfLx-P3R4UlhKi5lUSvBbV2BrRm23ELLjaDWVopDyaqKGcYESsC2hJpxJWjZ1GUjDTDVcsWR72fPl9w08vcZQ9RpOINdBwOOc9BCCFkqSf4LGZGCp49P8MUCjR9D8Gj15NP6_lpTordH09ujaSaTfLKLnJse2z9ud6UEnu0ABAOd9TAYF24dIyrtVNfJvVzcD9fh9b_66debT59v2haLdiHiz1sN_psWkstKX5we6_WHs9M1vyj1Jvmni7cwarj0aYLzM0YoJ1RQxpTivwEz9crk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20763875</pqid></control><display><type>article</type><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</creator><creatorcontrib>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</creatorcontrib><description>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.27</identifier><identifier>PMID: 19194910</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ACT ; Antimalarials - metabolism ; Antimalarials - pharmacology ; artemisinic acid ; artemisinin ; Artemisinins - metabolism ; Artemisinins - pharmacology ; Biological and medical sciences ; Bioreactors ; biosynthesis ; Biotechnology ; Cost-Benefit Analysis ; dissolved oxygen ; Drug Therapy, Combination ; Fermentation ; Fundamental and applied biological sciences. Psychology ; genetically engineered microorganisms ; Industrial Microbiology - methods ; isoprenoid ; metabolism ; methionine ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; nutrient availability ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Time Factors</subject><ispartof>Biotechnology progress, 2008-09, Vol.24 (5), p.1026-1032</ispartof><rights>Copyright © 2008 American Institute of Chemical Engineers (AIChE)</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</citedby><cites>FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.27$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.27$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20823899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19194910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenihan, Jacob R</creatorcontrib><creatorcontrib>Tsuruta, Hiroko</creatorcontrib><creatorcontrib>Diola, Don</creatorcontrib><creatorcontrib>Renninger, Neil S</creatorcontrib><creatorcontrib>Regentin, Rika</creatorcontrib><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</description><subject>ACT</subject><subject>Antimalarials - metabolism</subject><subject>Antimalarials - pharmacology</subject><subject>artemisinic acid</subject><subject>artemisinin</subject><subject>Artemisinins - metabolism</subject><subject>Artemisinins - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>biosynthesis</subject><subject>Biotechnology</subject><subject>Cost-Benefit Analysis</subject><subject>dissolved oxygen</subject><subject>Drug Therapy, Combination</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetically engineered microorganisms</subject><subject>Industrial Microbiology - methods</subject><subject>isoprenoid</subject><subject>metabolism</subject><subject>methionine</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>nutrient availability</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Time Factors</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAQB_AIgehSEG8AuQAHlOKPxHaOpQsFURVEt-rRmjjjYsgXtlPo0_CqeJtVkZAQJ19-858ZT5Y9puSAEsJeNXHyB0zeyVa0YqQQhPO72UrJShSy5movexDCV0KIIoLdz_ZoTeuypmSV_VrjFXbj5IbLHIbcDe0confQ5eAj9i64wZkcjGtzi77HIUJ045BPfjQYQh7HPMzTNPqYxy-YmzHEAq1FE90VblU7m5uC0ab86Hro4K_4oWggYJtq-8YNS3zK8jA5DA-zexa6gI927352_vbN5uhdcfLx-P3R4UlhKi5lUSvBbV2BrRm23ELLjaDWVopDyaqKGcYESsC2hJpxJWjZ1GUjDTDVcsWR72fPl9w08vcZQ9RpOINdBwOOc9BCCFkqSf4LGZGCp49P8MUCjR9D8Gj15NP6_lpTordH09ujaSaTfLKLnJse2z9ud6UEnu0ABAOd9TAYF24dIyrtVNfJvVzcD9fh9b_66debT59v2haLdiHiz1sN_psWkstKX5we6_WHs9M1vyj1Jvmni7cwarj0aYLzM0YoJ1RQxpTivwEz9crk</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Lenihan, Jacob R</creator><creator>Tsuruta, Hiroko</creator><creator>Diola, Don</creator><creator>Renninger, Neil S</creator><creator>Regentin, Rika</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</title><author>Lenihan, Jacob R ; Tsuruta, Hiroko ; Diola, Don ; Renninger, Neil S ; Regentin, Rika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5377-9863f95af92ed3fad3c61ff583a42552c226e7aed4a9238614b94b7ca28d383e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACT</topic><topic>Antimalarials - metabolism</topic><topic>Antimalarials - pharmacology</topic><topic>artemisinic acid</topic><topic>artemisinin</topic><topic>Artemisinins - metabolism</topic><topic>Artemisinins - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>biosynthesis</topic><topic>Biotechnology</topic><topic>Cost-Benefit Analysis</topic><topic>dissolved oxygen</topic><topic>Drug Therapy, Combination</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetically engineered microorganisms</topic><topic>Industrial Microbiology - methods</topic><topic>isoprenoid</topic><topic>metabolism</topic><topic>methionine</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>nutrient availability</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenihan, Jacob R</creatorcontrib><creatorcontrib>Tsuruta, Hiroko</creatorcontrib><creatorcontrib>Diola, Don</creatorcontrib><creatorcontrib>Renninger, Neil S</creatorcontrib><creatorcontrib>Regentin, Rika</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenihan, Jacob R</au><au>Tsuruta, Hiroko</au><au>Diola, Don</au><au>Renninger, Neil S</au><au>Regentin, Rika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2008-09</date><risdate>2008</risdate><volume>24</volume><issue>5</issue><spage>1026</spage><epage>1032</epage><pages>1026-1032</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Artemisinin‐based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant‐derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25‐fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed‐batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen‐stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19194910</pmid><doi>10.1002/btpr.27</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2008-09, Vol.24 (5), p.1026-1032
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_66674870
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects ACT
Antimalarials - metabolism
Antimalarials - pharmacology
artemisinic acid
artemisinin
Artemisinins - metabolism
Artemisinins - pharmacology
Biological and medical sciences
Bioreactors
biosynthesis
Biotechnology
Cost-Benefit Analysis
dissolved oxygen
Drug Therapy, Combination
Fermentation
Fundamental and applied biological sciences. Psychology
genetically engineered microorganisms
Industrial Microbiology - methods
isoprenoid
metabolism
methionine
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
nutrient availability
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Time Factors
title Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20an%20industrial%20artemisinic%20acid%20fermentation%20process%20to%20support%20the%20cost-effective%20production%20of%20antimalarial%20artemisinin-based%20combination%20therapies&rft.jtitle=Biotechnology%20progress&rft.au=Lenihan,%20Jacob%20R&rft.date=2008-09&rft.volume=24&rft.issue=5&rft.spage=1026&rft.epage=1032&rft.pages=1026-1032&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.27&rft_dat=%3Cproquest_cross%3E20763875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20763875&rft_id=info:pmid/19194910&rfr_iscdi=true