Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis

Summary Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution & development 2004-07, Vol.6 (4), p.237-245
Hauptverfasser: Wang, Xiaodong, Greenberg, Jennifer F., Chamberlin, Helen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 4
container_start_page 237
container_title Evolution & development
container_volume 6
creator Wang, Xiaodong
Greenberg, Jennifer F.
Chamberlin, Helen M.
description Summary Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regulatory features underlying a conserved function can evolve, we compared the regulation of a conserved gene expression pattern in the related species Caenorhabditis elegans and C. briggsae. We find that both C. elegans and C. briggsae express the ovo‐related zinc finger gene lin‐48 in the same pattern in hindgut cells. However, the regulation of this gene by the Pax‐2/5/8 protein EGL‐38 differs in two important ways. First, specific differences in the regulatory sequences of lin‐48 result in the presence of two redundant EGL‐38 response elements in C. elegans, whereas the redundancy is absent in C. briggsae. Second, there is a single egl‐38 gene in C. briggsae. In contrast, the gene is duplicated in C. elegans, with only one copy retaining the ability to regulate lin‐48 in vivo. These results illustrate molecular changes that can occur despite maintenance of conserved gene function in different species.
doi_str_mv 10.1111/j.1525-142X.2004.04029.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66669456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66669456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4359-c11cfcac885be5398bc6a1b2fd77b67a466ff9d3b9b54f33fff88709542fae813</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1U1JbSv4B84pZgx3YSXyqh7VKoClxa2ptxnPHibdbe2knZ_fcku6tyhLl4pHnvG2seQpiSnI71YZlTUYiM8uIhLwjhOeGkkPnmFTp9GRztepIJTh9O0JuUloTQihfyGJ2MA0ZkyU_Rz_lz6IbeBY-DxREWQ6f7ELcYOliB7xNex9AOxvkF1tgEnyA-Q4sX4AHDZh0hpcm81n0P0WPn8UyDD_GXblrXu_QWvba6S3B-eM_Q3af57exzdvP96svs401mOBMyM5Qaa7Spa9GAYLJuTKlpU9i2qpqy0rwsrZUta2QjuGXMWlvXFZGCF1ZDTdkZer_njv99GiD1auWSga7THsKQVDmW5KL8p5BKySsuJ2K9F5oYUopg1Tq6lY5bRYmaYlBLNV1bTddWUwxqF4PajNZ3hx1Ds4L2r_Fw91FwsRf8dh1s_xus5pfzXTsCsj3ApR42LwAdH1VZsUqo-29X6n52Lb7-qIm6Zn8AlLOoQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19947491</pqid></control><display><type>article</type><title>Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Wang, Xiaodong ; Greenberg, Jennifer F. ; Chamberlin, Helen M.</creator><creatorcontrib>Wang, Xiaodong ; Greenberg, Jennifer F. ; Chamberlin, Helen M.</creatorcontrib><description>Summary Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regulatory features underlying a conserved function can evolve, we compared the regulation of a conserved gene expression pattern in the related species Caenorhabditis elegans and C. briggsae. We find that both C. elegans and C. briggsae express the ovo‐related zinc finger gene lin‐48 in the same pattern in hindgut cells. However, the regulation of this gene by the Pax‐2/5/8 protein EGL‐38 differs in two important ways. First, specific differences in the regulatory sequences of lin‐48 result in the presence of two redundant EGL‐38 response elements in C. elegans, whereas the redundancy is absent in C. briggsae. Second, there is a single egl‐38 gene in C. briggsae. In contrast, the gene is duplicated in C. elegans, with only one copy retaining the ability to regulate lin‐48 in vivo. These results illustrate molecular changes that can occur despite maintenance of conserved gene function in different species.</description><identifier>ISSN: 1520-541X</identifier><identifier>EISSN: 1525-142X</identifier><identifier>DOI: 10.1111/j.1525-142X.2004.04029.x</identifier><identifier>PMID: 15230964</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Caenorhabditis ; Caenorhabditis - genetics ; Caenorhabditis - metabolism ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; DNA, Complementary - genetics ; Evolution, Molecular ; Gene Duplication ; Gene Expression Regulation ; Genes, Reporter ; Molecular Sequence Data ; Reverse Transcriptase Polymerase Chain Reaction ; Selection, Genetic ; Sequence Alignment ; Sequence Analysis, DNA ; Species Specificity ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transgenes</subject><ispartof>Evolution &amp; development, 2004-07, Vol.6 (4), p.237-245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4359-c11cfcac885be5398bc6a1b2fd77b67a466ff9d3b9b54f33fff88709542fae813</citedby><cites>FETCH-LOGICAL-c4359-c11cfcac885be5398bc6a1b2fd77b67a466ff9d3b9b54f33fff88709542fae813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1525-142X.2004.04029.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1525-142X.2004.04029.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15230964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Greenberg, Jennifer F.</creatorcontrib><creatorcontrib>Chamberlin, Helen M.</creatorcontrib><title>Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis</title><title>Evolution &amp; development</title><addtitle>Evol Dev</addtitle><description>Summary Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regulatory features underlying a conserved function can evolve, we compared the regulation of a conserved gene expression pattern in the related species Caenorhabditis elegans and C. briggsae. We find that both C. elegans and C. briggsae express the ovo‐related zinc finger gene lin‐48 in the same pattern in hindgut cells. However, the regulation of this gene by the Pax‐2/5/8 protein EGL‐38 differs in two important ways. First, specific differences in the regulatory sequences of lin‐48 result in the presence of two redundant EGL‐38 response elements in C. elegans, whereas the redundancy is absent in C. briggsae. Second, there is a single egl‐38 gene in C. briggsae. In contrast, the gene is duplicated in C. elegans, with only one copy retaining the ability to regulate lin‐48 in vivo. These results illustrate molecular changes that can occur despite maintenance of conserved gene function in different species.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Caenorhabditis</subject><subject>Caenorhabditis - genetics</subject><subject>Caenorhabditis - metabolism</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>DNA, Complementary - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Duplication</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Molecular Sequence Data</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Selection, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transgenes</subject><issn>1520-541X</issn><issn>1525-142X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS1U1JbSv4B84pZgx3YSXyqh7VKoClxa2ptxnPHibdbe2knZ_fcku6tyhLl4pHnvG2seQpiSnI71YZlTUYiM8uIhLwjhOeGkkPnmFTp9GRztepIJTh9O0JuUloTQihfyGJ2MA0ZkyU_Rz_lz6IbeBY-DxREWQ6f7ELcYOliB7xNex9AOxvkF1tgEnyA-Q4sX4AHDZh0hpcm81n0P0WPn8UyDD_GXblrXu_QWvba6S3B-eM_Q3af57exzdvP96svs401mOBMyM5Qaa7Spa9GAYLJuTKlpU9i2qpqy0rwsrZUta2QjuGXMWlvXFZGCF1ZDTdkZer_njv99GiD1auWSga7THsKQVDmW5KL8p5BKySsuJ2K9F5oYUopg1Tq6lY5bRYmaYlBLNV1bTddWUwxqF4PajNZ3hx1Ds4L2r_Fw91FwsRf8dh1s_xus5pfzXTsCsj3ApR42LwAdH1VZsUqo-29X6n52Lb7-qIm6Zn8AlLOoQw</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Wang, Xiaodong</creator><creator>Greenberg, Jennifer F.</creator><creator>Chamberlin, Helen M.</creator><general>Blackwell Science Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis</title><author>Wang, Xiaodong ; Greenberg, Jennifer F. ; Chamberlin, Helen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4359-c11cfcac885be5398bc6a1b2fd77b67a466ff9d3b9b54f33fff88709542fae813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Caenorhabditis</topic><topic>Caenorhabditis - genetics</topic><topic>Caenorhabditis - metabolism</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>DNA, Complementary - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Duplication</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Molecular Sequence Data</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Selection, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Greenberg, Jennifer F.</creatorcontrib><creatorcontrib>Chamberlin, Helen M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaodong</au><au>Greenberg, Jennifer F.</au><au>Chamberlin, Helen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis</atitle><jtitle>Evolution &amp; development</jtitle><addtitle>Evol Dev</addtitle><date>2004-07</date><risdate>2004</risdate><volume>6</volume><issue>4</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>1520-541X</issn><eissn>1525-142X</eissn><abstract>Summary Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regulatory features underlying a conserved function can evolve, we compared the regulation of a conserved gene expression pattern in the related species Caenorhabditis elegans and C. briggsae. We find that both C. elegans and C. briggsae express the ovo‐related zinc finger gene lin‐48 in the same pattern in hindgut cells. However, the regulation of this gene by the Pax‐2/5/8 protein EGL‐38 differs in two important ways. First, specific differences in the regulatory sequences of lin‐48 result in the presence of two redundant EGL‐38 response elements in C. elegans, whereas the redundancy is absent in C. briggsae. Second, there is a single egl‐38 gene in C. briggsae. In contrast, the gene is duplicated in C. elegans, with only one copy retaining the ability to regulate lin‐48 in vivo. These results illustrate molecular changes that can occur despite maintenance of conserved gene function in different species.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Inc</pub><pmid>15230964</pmid><doi>10.1111/j.1525-142X.2004.04029.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-541X
ispartof Evolution & development, 2004-07, Vol.6 (4), p.237-245
issn 1520-541X
1525-142X
language eng
recordid cdi_proquest_miscellaneous_66669456
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Amino Acid Sequence
Animals
Base Sequence
Binding Sites
Caenorhabditis
Caenorhabditis - genetics
Caenorhabditis - metabolism
Caenorhabditis elegans
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
DNA, Complementary - genetics
Evolution, Molecular
Gene Duplication
Gene Expression Regulation
Genes, Reporter
Molecular Sequence Data
Reverse Transcriptase Polymerase Chain Reaction
Selection, Genetic
Sequence Alignment
Sequence Analysis, DNA
Species Specificity
Transcription Factors - genetics
Transcription Factors - metabolism
Transgenes
title Evolution of regulatory elements producing a conserved gene expression pattern in Caenorhabditis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20regulatory%20elements%20producing%20a%20conserved%20gene%20expression%20pattern%20in%20Caenorhabditis&rft.jtitle=Evolution%20&%20development&rft.au=Wang,%20Xiaodong&rft.date=2004-07&rft.volume=6&rft.issue=4&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=1520-541X&rft.eissn=1525-142X&rft_id=info:doi/10.1111/j.1525-142X.2004.04029.x&rft_dat=%3Cproquest_cross%3E66669456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19947491&rft_id=info:pmid/15230964&rfr_iscdi=true