Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs
Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expr...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2004-07, Vol.22 (7), p.911-917 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 917 |
---|---|
container_issue | 7 |
container_start_page | 911 |
container_title | Nature biotechnology |
container_volume | 22 |
creator | Bork, Peer Korbel, Jan O Jensen, Lars J von Mering, Christian |
description | Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in ∼100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in
Escherichia coli
shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators. |
doi_str_mv | 10.1038/nbt988 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66669149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190382783</galeid><sourcerecordid>A190382783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-5f7ef87b28b887b427b1514cb2f5e3fae7a9448be38745d11e5102c3627432423</originalsourceid><addsrcrecordid>eNqNkktv1DAQgCMEoqXAL0AoQgLEYYvt-MltVfGoVKkSr2vkOOOVq6y9eBLU_fd4SUQpHMA-zNjzzYzmUVWPKTmlpNGvYzcare9Ux1RwuaLSyLtFJ1qtCBXyqHqAeEUIkVzK-9URFYwZIcRxdb2OdthjwDr5egMxbYOrXYojXI9v6l2GPrgxpHgw-yn-1O1QW8Tkgj28sPY5bQ8-CPk79HUX-pBhIYd9PWYb0eXQFVvJAPXOhowPq3veDgiPFnlSfXn39vPZh9XF5fvzs_XFygltxpXwCrxWHdOdLoIz1VFBueuYF9B4C8oaznUHjVZc9JSCoIS5RjLFG8ZZc1K9mOPucvo2AY7tNqCDYbAR0oStLMdQbv4JUqUol0IU8Nkf4FWacqkVW8ZYQ4iRvECnM7SxA7Qh-lTa4MrtoXQ4RfCh_K-pKcNjSjfF4dUth2UGGzshtuefPv4_e_n1NruU5XJCzODbXQ5bm_ctJe1hddp5dQr4dClr6rbQ32DLrhTg-QJYdHbwZawu4G-caYzitHAvZw6LKW4g3_Tnr5RPZjLaccrwK9Ri_gFwY-H3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222300964</pqid></control><display><type>article</type><title>Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bork, Peer ; Korbel, Jan O ; Jensen, Lars J ; von Mering, Christian</creator><creatorcontrib>Bork, Peer ; Korbel, Jan O ; Jensen, Lars J ; von Mering, Christian</creatorcontrib><description>Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in ∼100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in
Escherichia coli
shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt988</identifier><identifier>PMID: 15229555</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Amino Acid Sequence ; analysis ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biosynthesis ; Biotechnology ; E coli ; Escherichia coli ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - genetics ; Gene Order ; Genome, Bacterial ; Genomics ; Genomics - methods ; Life Sciences ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Phylogeny ; Proteins - genetics ; Proteins - physiology ; Sequence Analysis, Protein - methods ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Nature biotechnology, 2004-07, Vol.22 (7), p.911-917</ispartof><rights>Springer Nature America, Inc. 2004</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-5f7ef87b28b887b427b1514cb2f5e3fae7a9448be38745d11e5102c3627432423</citedby><cites>FETCH-LOGICAL-c589t-5f7ef87b28b887b427b1514cb2f5e3fae7a9448be38745d11e5102c3627432423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15939741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15229555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bork, Peer</creatorcontrib><creatorcontrib>Korbel, Jan O</creatorcontrib><creatorcontrib>Jensen, Lars J</creatorcontrib><creatorcontrib>von Mering, Christian</creatorcontrib><title>Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in ∼100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in
Escherichia coli
shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.</description><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>analysis</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Order</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Life Sciences</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Proteins - genetics</subject><subject>Proteins - physiology</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktv1DAQgCMEoqXAL0AoQgLEYYvt-MltVfGoVKkSr2vkOOOVq6y9eBLU_fd4SUQpHMA-zNjzzYzmUVWPKTmlpNGvYzcare9Ux1RwuaLSyLtFJ1qtCBXyqHqAeEUIkVzK-9URFYwZIcRxdb2OdthjwDr5egMxbYOrXYojXI9v6l2GPrgxpHgw-yn-1O1QW8Tkgj28sPY5bQ8-CPk79HUX-pBhIYd9PWYb0eXQFVvJAPXOhowPq3veDgiPFnlSfXn39vPZh9XF5fvzs_XFygltxpXwCrxWHdOdLoIz1VFBueuYF9B4C8oaznUHjVZc9JSCoIS5RjLFG8ZZc1K9mOPucvo2AY7tNqCDYbAR0oStLMdQbv4JUqUol0IU8Nkf4FWacqkVW8ZYQ4iRvECnM7SxA7Qh-lTa4MrtoXQ4RfCh_K-pKcNjSjfF4dUth2UGGzshtuefPv4_e_n1NruU5XJCzODbXQ5bm_ctJe1hddp5dQr4dClr6rbQ32DLrhTg-QJYdHbwZawu4G-caYzitHAvZw6LKW4g3_Tnr5RPZjLaccrwK9Ri_gFwY-H3</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Bork, Peer</creator><creator>Korbel, Jan O</creator><creator>Jensen, Lars J</creator><creator>von Mering, Christian</creator><general>Nature Publishing Group US</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs</title><author>Bork, Peer ; Korbel, Jan O ; Jensen, Lars J ; von Mering, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-5f7ef87b28b887b427b1514cb2f5e3fae7a9448be38745d11e5102c3627432423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>analysis</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Order</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Life Sciences</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Proteins - genetics</topic><topic>Proteins - physiology</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bork, Peer</creatorcontrib><creatorcontrib>Korbel, Jan O</creatorcontrib><creatorcontrib>Jensen, Lars J</creatorcontrib><creatorcontrib>von Mering, Christian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bork, Peer</au><au>Korbel, Jan O</au><au>Jensen, Lars J</au><au>von Mering, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>22</volume><issue>7</issue><spage>911</spage><epage>917</epage><pages>911-917</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in ∼100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in
Escherichia coli
shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>15229555</pmid><doi>10.1038/nbt988</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2004-07, Vol.22 (7), p.911-917 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_66669149 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Agriculture Amino Acid Sequence analysis Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biosynthesis Biotechnology E coli Escherichia coli Fundamental and applied biological sciences. Psychology Gene Expression Regulation - genetics Gene Order Genome, Bacterial Genomics Genomics - methods Life Sciences Molecular and cellular biology Molecular genetics Molecular Sequence Data Phylogeny Proteins - genetics Proteins - physiology Sequence Analysis, Protein - methods Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic Transcription. Transcription factor. Splicing. Rna processing |
title | Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20genomic%20context:%20prediction%20of%20functional%20associations%20from%20conserved%20bidirectionally%20transcribed%20gene%20pairs&rft.jtitle=Nature%20biotechnology&rft.au=Bork,%20Peer&rft.date=2004-07-01&rft.volume=22&rft.issue=7&rft.spage=911&rft.epage=917&rft.pages=911-917&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt988&rft_dat=%3Cgale_proqu%3EA190382783%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222300964&rft_id=info:pmid/15229555&rft_galeid=A190382783&rfr_iscdi=true |