Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation
ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2004-07, Vol.18 (10), p.1060-1070 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 10 |
container_start_page | 1060 |
container_title | The FASEB journal |
container_volume | 18 |
creator | Dougherty, Christopher J. Kubasiak, Lori A. Frazier, Donna P. Li, Huifang Xiong, Wen‐Cheng Bishopric, Nanette H. Webster, Keith A. |
description | ABSTRACT
C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004) |
doi_str_mv | 10.1096/fj.04-1505com |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66661555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66661555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</originalsourceid><addsrcrecordid>eNp9kMFS2zAQhjUdGEiBI1dGJ6YcTFeWtbF7oxnSNhA4tD1rFHlNlNpWajktvvUR-ow8SQXJTG_sYXd25vu_w8_YqYBLAQW-r1aXkCVCgbK-ecNGQklIMEfYYyPIizRBlPkhexvCCgAECDxgh0KlKaaII9bMXe_t0rdl50zNg3toTR24a13vTE-8XxI3tne_TO98y33F7dOfv7NNy-_i7alrXAzwH3EH4u9mdzcXfDHw5bD2j85EpCP_ODxQ-5I_ZvtV1NPJ7h6x79Prb5PPye39py-Tq9vEynE6T6yxqiTCTBlJlaLcGiRcLAwWlFU0htJIiVVZ5ogFirGKsdKmsshBZWOw8oidb73rzv_cUOh144KlujYt-U3QGEcopSKYbEHb-RA6qvS6c43pBi1AP_erq5WGTO_6jfzZTrxZNFT-p3eFRuDDFvjtahpet-np14_pdAbZ8z-5n8t_GoeNxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66661555</pqid></control><display><type>article</type><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</creator><creatorcontrib>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</creatorcontrib><description>ABSTRACT
C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.04-1505com</identifier><identifier>PMID: 15226266</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Anisomycin - pharmacology ; Antimycin A - pharmacology ; Apoptosis ; calcium ; Calcium Signaling - physiology ; cardiac myocyte ; cdc42 GTP-Binding Protein - metabolism ; Cell Hypoxia - physiology ; Cells, Cultured - drug effects ; Cells, Cultured - enzymology ; Electron Transport ; Enzyme Activation - drug effects ; Focal Adhesion Kinase 2 ; Hydrogen Peroxide - pharmacology ; JNK Mitogen-Activated Protein Kinases - metabolism ; MAP Kinase Signaling System - physiology ; mitochondria ; Mitochondria - physiology ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - ultrastructure ; Oxygen Consumption ; Phosphorylation ; Protein Processing, Post-Translational ; Protein-Tyrosine Kinases - metabolism ; Pyk2 ; rac1 GTP-Binding Protein - metabolism ; Rac‐1 ; Rats ; Reactive Oxygen Species ; ROI ; Signal Transduction</subject><ispartof>The FASEB journal, 2004-07, Vol.18 (10), p.1060-1070</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</citedby><cites>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.04-1505com$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.04-1505com$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15226266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dougherty, Christopher J.</creatorcontrib><creatorcontrib>Kubasiak, Lori A.</creatorcontrib><creatorcontrib>Frazier, Donna P.</creatorcontrib><creatorcontrib>Li, Huifang</creatorcontrib><creatorcontrib>Xiong, Wen‐Cheng</creatorcontrib><creatorcontrib>Bishopric, Nanette H.</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</description><subject>Animals</subject><subject>Anisomycin - pharmacology</subject><subject>Antimycin A - pharmacology</subject><subject>Apoptosis</subject><subject>calcium</subject><subject>Calcium Signaling - physiology</subject><subject>cardiac myocyte</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured - drug effects</subject><subject>Cells, Cultured - enzymology</subject><subject>Electron Transport</subject><subject>Enzyme Activation - drug effects</subject><subject>Focal Adhesion Kinase 2</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - ultrastructure</subject><subject>Oxygen Consumption</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Pyk2</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rac‐1</subject><subject>Rats</subject><subject>Reactive Oxygen Species</subject><subject>ROI</subject><subject>Signal Transduction</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFS2zAQhjUdGEiBI1dGJ6YcTFeWtbF7oxnSNhA4tD1rFHlNlNpWajktvvUR-ow8SQXJTG_sYXd25vu_w8_YqYBLAQW-r1aXkCVCgbK-ecNGQklIMEfYYyPIizRBlPkhexvCCgAECDxgh0KlKaaII9bMXe_t0rdl50zNg3toTR24a13vTE-8XxI3tne_TO98y33F7dOfv7NNy-_i7alrXAzwH3EH4u9mdzcXfDHw5bD2j85EpCP_ODxQ-5I_ZvtV1NPJ7h6x79Prb5PPye39py-Tq9vEynE6T6yxqiTCTBlJlaLcGiRcLAwWlFU0htJIiVVZ5ogFirGKsdKmsshBZWOw8oidb73rzv_cUOh144KlujYt-U3QGEcopSKYbEHb-RA6qvS6c43pBi1AP_erq5WGTO_6jfzZTrxZNFT-p3eFRuDDFvjtahpet-np14_pdAbZ8z-5n8t_GoeNxA</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Dougherty, Christopher J.</creator><creator>Kubasiak, Lori A.</creator><creator>Frazier, Donna P.</creator><creator>Li, Huifang</creator><creator>Xiong, Wen‐Cheng</creator><creator>Bishopric, Nanette H.</creator><creator>Webster, Keith A.</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><author>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Anisomycin - pharmacology</topic><topic>Antimycin A - pharmacology</topic><topic>Apoptosis</topic><topic>calcium</topic><topic>Calcium Signaling - physiology</topic><topic>cardiac myocyte</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured - drug effects</topic><topic>Cells, Cultured - enzymology</topic><topic>Electron Transport</topic><topic>Enzyme Activation - drug effects</topic><topic>Focal Adhesion Kinase 2</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - ultrastructure</topic><topic>Oxygen Consumption</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Pyk2</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rac‐1</topic><topic>Rats</topic><topic>Reactive Oxygen Species</topic><topic>ROI</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dougherty, Christopher J.</creatorcontrib><creatorcontrib>Kubasiak, Lori A.</creatorcontrib><creatorcontrib>Frazier, Donna P.</creatorcontrib><creatorcontrib>Li, Huifang</creatorcontrib><creatorcontrib>Xiong, Wen‐Cheng</creatorcontrib><creatorcontrib>Bishopric, Nanette H.</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dougherty, Christopher J.</au><au>Kubasiak, Lori A.</au><au>Frazier, Donna P.</au><au>Li, Huifang</au><au>Xiong, Wen‐Cheng</au><au>Bishopric, Nanette H.</au><au>Webster, Keith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2004-07</date><risdate>2004</risdate><volume>18</volume><issue>10</issue><spage>1060</spage><epage>1070</epage><pages>1060-1070</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>15226266</pmid><doi>10.1096/fj.04-1505com</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2004-07, Vol.18 (10), p.1060-1070 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_66661555 |
source | Wiley-Blackwell Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Anisomycin - pharmacology Antimycin A - pharmacology Apoptosis calcium Calcium Signaling - physiology cardiac myocyte cdc42 GTP-Binding Protein - metabolism Cell Hypoxia - physiology Cells, Cultured - drug effects Cells, Cultured - enzymology Electron Transport Enzyme Activation - drug effects Focal Adhesion Kinase 2 Hydrogen Peroxide - pharmacology JNK Mitogen-Activated Protein Kinases - metabolism MAP Kinase Signaling System - physiology mitochondria Mitochondria - physiology Myocytes, Cardiac - enzymology Myocytes, Cardiac - ultrastructure Oxygen Consumption Phosphorylation Protein Processing, Post-Translational Protein-Tyrosine Kinases - metabolism Pyk2 rac1 GTP-Binding Protein - metabolism Rac‐1 Rats Reactive Oxygen Species ROI Signal Transduction |
title | Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20signals%20initiate%20the%20activation%20of%20c%E2%80%90Jun%20N%E2%80%90terminal%20kinase%20(JNK)%20by%20hypoxia%E2%80%90reoxygenation&rft.jtitle=The%20FASEB%20journal&rft.au=Dougherty,%20Christopher%20J.&rft.date=2004-07&rft.volume=18&rft.issue=10&rft.spage=1060&rft.epage=1070&rft.pages=1060-1070&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.04-1505com&rft_dat=%3Cproquest_cross%3E66661555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66661555&rft_id=info:pmid/15226266&rfr_iscdi=true |