Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation

ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2004-07, Vol.18 (10), p.1060-1070
Hauptverfasser: Dougherty, Christopher J., Kubasiak, Lori A., Frazier, Donna P., Li, Huifang, Xiong, Wen‐Cheng, Bishopric, Nanette H., Webster, Keith A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1070
container_issue 10
container_start_page 1060
container_title The FASEB journal
container_volume 18
creator Dougherty, Christopher J.
Kubasiak, Lori A.
Frazier, Donna P.
Li, Huifang
Xiong, Wen‐Cheng
Bishopric, Nanette H.
Webster, Keith A.
description ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)
doi_str_mv 10.1096/fj.04-1505com
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66661555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66661555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</originalsourceid><addsrcrecordid>eNp9kMFS2zAQhjUdGEiBI1dGJ6YcTFeWtbF7oxnSNhA4tD1rFHlNlNpWajktvvUR-ow8SQXJTG_sYXd25vu_w8_YqYBLAQW-r1aXkCVCgbK-ecNGQklIMEfYYyPIizRBlPkhexvCCgAECDxgh0KlKaaII9bMXe_t0rdl50zNg3toTR24a13vTE-8XxI3tne_TO98y33F7dOfv7NNy-_i7alrXAzwH3EH4u9mdzcXfDHw5bD2j85EpCP_ODxQ-5I_ZvtV1NPJ7h6x79Prb5PPye39py-Tq9vEynE6T6yxqiTCTBlJlaLcGiRcLAwWlFU0htJIiVVZ5ogFirGKsdKmsshBZWOw8oidb73rzv_cUOh144KlujYt-U3QGEcopSKYbEHb-RA6qvS6c43pBi1AP_erq5WGTO_6jfzZTrxZNFT-p3eFRuDDFvjtahpet-np14_pdAbZ8z-5n8t_GoeNxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66661555</pqid></control><display><type>article</type><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</creator><creatorcontrib>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</creatorcontrib><description>ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.04-1505com</identifier><identifier>PMID: 15226266</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Anisomycin - pharmacology ; Antimycin A - pharmacology ; Apoptosis ; calcium ; Calcium Signaling - physiology ; cardiac myocyte ; cdc42 GTP-Binding Protein - metabolism ; Cell Hypoxia - physiology ; Cells, Cultured - drug effects ; Cells, Cultured - enzymology ; Electron Transport ; Enzyme Activation - drug effects ; Focal Adhesion Kinase 2 ; Hydrogen Peroxide - pharmacology ; JNK Mitogen-Activated Protein Kinases - metabolism ; MAP Kinase Signaling System - physiology ; mitochondria ; Mitochondria - physiology ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - ultrastructure ; Oxygen Consumption ; Phosphorylation ; Protein Processing, Post-Translational ; Protein-Tyrosine Kinases - metabolism ; Pyk2 ; rac1 GTP-Binding Protein - metabolism ; Rac‐1 ; Rats ; Reactive Oxygen Species ; ROI ; Signal Transduction</subject><ispartof>The FASEB journal, 2004-07, Vol.18 (10), p.1060-1070</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</citedby><cites>FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.04-1505com$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.04-1505com$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15226266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dougherty, Christopher J.</creatorcontrib><creatorcontrib>Kubasiak, Lori A.</creatorcontrib><creatorcontrib>Frazier, Donna P.</creatorcontrib><creatorcontrib>Li, Huifang</creatorcontrib><creatorcontrib>Xiong, Wen‐Cheng</creatorcontrib><creatorcontrib>Bishopric, Nanette H.</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</description><subject>Animals</subject><subject>Anisomycin - pharmacology</subject><subject>Antimycin A - pharmacology</subject><subject>Apoptosis</subject><subject>calcium</subject><subject>Calcium Signaling - physiology</subject><subject>cardiac myocyte</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Hypoxia - physiology</subject><subject>Cells, Cultured - drug effects</subject><subject>Cells, Cultured - enzymology</subject><subject>Electron Transport</subject><subject>Enzyme Activation - drug effects</subject><subject>Focal Adhesion Kinase 2</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>JNK Mitogen-Activated Protein Kinases - metabolism</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - ultrastructure</subject><subject>Oxygen Consumption</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Pyk2</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rac‐1</subject><subject>Rats</subject><subject>Reactive Oxygen Species</subject><subject>ROI</subject><subject>Signal Transduction</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFS2zAQhjUdGEiBI1dGJ6YcTFeWtbF7oxnSNhA4tD1rFHlNlNpWajktvvUR-ow8SQXJTG_sYXd25vu_w8_YqYBLAQW-r1aXkCVCgbK-ecNGQklIMEfYYyPIizRBlPkhexvCCgAECDxgh0KlKaaII9bMXe_t0rdl50zNg3toTR24a13vTE-8XxI3tne_TO98y33F7dOfv7NNy-_i7alrXAzwH3EH4u9mdzcXfDHw5bD2j85EpCP_ODxQ-5I_ZvtV1NPJ7h6x79Prb5PPye39py-Tq9vEynE6T6yxqiTCTBlJlaLcGiRcLAwWlFU0htJIiVVZ5ogFirGKsdKmsshBZWOw8oidb73rzv_cUOh144KlujYt-U3QGEcopSKYbEHb-RA6qvS6c43pBi1AP_erq5WGTO_6jfzZTrxZNFT-p3eFRuDDFvjtahpet-np14_pdAbZ8z-5n8t_GoeNxA</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Dougherty, Christopher J.</creator><creator>Kubasiak, Lori A.</creator><creator>Frazier, Donna P.</creator><creator>Li, Huifang</creator><creator>Xiong, Wen‐Cheng</creator><creator>Bishopric, Nanette H.</creator><creator>Webster, Keith A.</creator><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200407</creationdate><title>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</title><author>Dougherty, Christopher J. ; Kubasiak, Lori A. ; Frazier, Donna P. ; Li, Huifang ; Xiong, Wen‐Cheng ; Bishopric, Nanette H. ; Webster, Keith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372M-cac5dee645a3ef5e8ca6e6bba69e4fe70da336fdd86696175c37dc239805470c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Anisomycin - pharmacology</topic><topic>Antimycin A - pharmacology</topic><topic>Apoptosis</topic><topic>calcium</topic><topic>Calcium Signaling - physiology</topic><topic>cardiac myocyte</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Hypoxia - physiology</topic><topic>Cells, Cultured - drug effects</topic><topic>Cells, Cultured - enzymology</topic><topic>Electron Transport</topic><topic>Enzyme Activation - drug effects</topic><topic>Focal Adhesion Kinase 2</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>JNK Mitogen-Activated Protein Kinases - metabolism</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - ultrastructure</topic><topic>Oxygen Consumption</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Pyk2</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rac‐1</topic><topic>Rats</topic><topic>Reactive Oxygen Species</topic><topic>ROI</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dougherty, Christopher J.</creatorcontrib><creatorcontrib>Kubasiak, Lori A.</creatorcontrib><creatorcontrib>Frazier, Donna P.</creatorcontrib><creatorcontrib>Li, Huifang</creatorcontrib><creatorcontrib>Xiong, Wen‐Cheng</creatorcontrib><creatorcontrib>Bishopric, Nanette H.</creatorcontrib><creatorcontrib>Webster, Keith A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dougherty, Christopher J.</au><au>Kubasiak, Lori A.</au><au>Frazier, Donna P.</au><au>Li, Huifang</au><au>Xiong, Wen‐Cheng</au><au>Bishopric, Nanette H.</au><au>Webster, Keith A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2004-07</date><risdate>2004</risdate><volume>18</volume><issue>10</issue><spage>1060</spage><epage>1070</epage><pages>1060-1070</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT C‐Jun N‐terminal kinase (JNK) is part of the mitogen‐activated protein kinase (MAPK) family of signaling pathways that are induced in response to extracellular stimuli. JNK is primarily a stress‐response pathway and can be activated by proinflammatory cyto‐ kines and growth factors coupled to membrane recep‐ tors or through non‐receptor pathways by stimuli such as heat shock, UV irradiation, protein synthesis inhibi‐ tors, and conditions that elevate the levels of reactive oxygen intermediates (ROI). The molecular initiators of MAPKs by non‐receptor stimuli have not been de‐ scribed. Ischemia followed by reperfusion or hypoxia with reoxygenation represents a condition of high oxidative stress where JNK activation is associated with elevated ROI. We show here that the activation of JNK by this condition is initiated in the mitochondria and requires coupled electron transport, ROI generation, and calcium flux. These signals cause the selective, sequential activation of the calcium‐dependent, pro‐ line‐rich kinase Pyk2 and the small GTP binding factors Rac‐1 and Cdc42. Interruption of these interactions with inactivated dominant negative mutant proteins, blocking calcium flux, or inhibiting electron transport through mitochondrial complexes II, III, or IV prevents JNK activation and results in a proapoptotic phenotype that is characteristic of JNK inhibition in this model of ischemia‐reperfusion. The signaling pathway is unique for the reoxygenation stimulus and provides a frame‐ work for other non‐receptor‐mediated pathways of MAPK activation.—Dougherty, C. J., Kubasiak, L. A., Frazier, D. P., Li, H., Xiong, W.‐C., Bishopric, N. H., Webster, K. A. Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐ reoxygenation. FASEB J. 18, 1060–1070 (2004)</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>15226266</pmid><doi>10.1096/fj.04-1505com</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2004-07, Vol.18 (10), p.1060-1070
issn 0892-6638
1530-6860
language eng
recordid cdi_proquest_miscellaneous_66661555
source Wiley-Blackwell Journals; MEDLINE; Alma/SFX Local Collection
subjects Animals
Anisomycin - pharmacology
Antimycin A - pharmacology
Apoptosis
calcium
Calcium Signaling - physiology
cardiac myocyte
cdc42 GTP-Binding Protein - metabolism
Cell Hypoxia - physiology
Cells, Cultured - drug effects
Cells, Cultured - enzymology
Electron Transport
Enzyme Activation - drug effects
Focal Adhesion Kinase 2
Hydrogen Peroxide - pharmacology
JNK Mitogen-Activated Protein Kinases - metabolism
MAP Kinase Signaling System - physiology
mitochondria
Mitochondria - physiology
Myocytes, Cardiac - enzymology
Myocytes, Cardiac - ultrastructure
Oxygen Consumption
Phosphorylation
Protein Processing, Post-Translational
Protein-Tyrosine Kinases - metabolism
Pyk2
rac1 GTP-Binding Protein - metabolism
Rac‐1
Rats
Reactive Oxygen Species
ROI
Signal Transduction
title Mitochondrial signals initiate the activation of c‐Jun N‐terminal kinase (JNK) by hypoxia‐reoxygenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20signals%20initiate%20the%20activation%20of%20c%E2%80%90Jun%20N%E2%80%90terminal%20kinase%20(JNK)%20by%20hypoxia%E2%80%90reoxygenation&rft.jtitle=The%20FASEB%20journal&rft.au=Dougherty,%20Christopher%20J.&rft.date=2004-07&rft.volume=18&rft.issue=10&rft.spage=1060&rft.epage=1070&rft.pages=1060-1070&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.04-1505com&rft_dat=%3Cproquest_cross%3E66661555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66661555&rft_id=info:pmid/15226266&rfr_iscdi=true