Cluster analysis of soft X-ray spectromicroscopy data

Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub- 100 nm spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2004-07, Vol.100 (1), p.35-57
Hauptverfasser: Lerotic, M, Jacobsen, C, Schäfer, T, Vogt, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 35
container_title Ultramicroscopy
container_volume 100
creator Lerotic, M
Jacobsen, C
Schäfer, T
Vogt, S
description Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub- 100 nm spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), some spectral signatures may not be known in advance so other approaches must be used. We describe here an approach that uses principal component analysis to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides.
doi_str_mv 10.1016/j.ultramic.2004.01.008
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_66659827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399104000166</els_id><sourcerecordid>66659827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-fd1709892a64885f729b03adc887578c715ed7b8208f4afda8ea62ef04d9843b3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotl5eoQwI7mY8yVyS7JTiDQQ3Cu5CmgumTCc1yQh9ezO04tLV2Xzn_P_5EFpgqDDg7mZdjX0KcuNURQCaCnAFwI7QHDPKS0JJfYzmUENT1pzjGTqLcQ0AGBp2ima4JZh3HM9Ru-zHmEwo5CD7XXSx8LaI3qbiowxyV8StUSn4nBN8VH67K7RM8gKdWNlHc3mY5-j94f5t-VS-vD4-L-9eSlVzkkqrMQXOOJFdw1hrKeErqKVWjNGWMkVxazRdMQLMNtJqyYzsiLHQaM6aelWfo6v9XR-TE1G5ZNSn8sOQSwncQj5Ocaau99Q2-K_RxCQ2LirT93Iwfoyi67qWM0Iz2O3B6ZkYjBXb4DYy7AQGMWkVa_GrVUxaBWCRtebFxSFhXG2M_ls7eMzA7R4w2ca3M2EqawZltAtTV-3dfxk_xT6Lgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66659827</pqid></control><display><type>article</type><title>Cluster analysis of soft X-ray spectromicroscopy data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lerotic, M ; Jacobsen, C ; Schäfer, T ; Vogt, S</creator><creatorcontrib>Lerotic, M ; Jacobsen, C ; Schäfer, T ; Vogt, S ; State Univ. of New York (US) ; Advanced Photon Source, Argonne National Lab., Argonne, IL (US) ; Forschungszentrum Karlsruhe (DE)</creatorcontrib><description>Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub- 100 nm spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), some spectral signatures may not be known in advance so other approaches must be used. We describe here an approach that uses principal component analysis to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2004.01.008</identifier><identifier>PMID: 15219691</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>ADVANCED PHOTON SOURCE ; Cluster Analysis ; DATA ANALYSIS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MICROSCOPY ; Organic Chemicals - analysis ; Principal Component Analysis ; SOFT X RADIATION ; Spectrometry, X-Ray Emission - methods ; X-ray microscopy ; X-ray spectromicroscopy ; X-RAY SPECTROSCOPY</subject><ispartof>Ultramicroscopy, 2004-07, Vol.100 (1), p.35-57</ispartof><rights>2004 Elsevier B.V.</rights><rights>Copyright 2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-fd1709892a64885f729b03adc887578c715ed7b8208f4afda8ea62ef04d9843b3</citedby><cites>FETCH-LOGICAL-c392t-fd1709892a64885f729b03adc887578c715ed7b8208f4afda8ea62ef04d9843b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304399104000166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15219691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15009871$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerotic, M</creatorcontrib><creatorcontrib>Jacobsen, C</creatorcontrib><creatorcontrib>Schäfer, T</creatorcontrib><creatorcontrib>Vogt, S</creatorcontrib><creatorcontrib>State Univ. of New York (US)</creatorcontrib><creatorcontrib>Advanced Photon Source, Argonne National Lab., Argonne, IL (US)</creatorcontrib><creatorcontrib>Forschungszentrum Karlsruhe (DE)</creatorcontrib><title>Cluster analysis of soft X-ray spectromicroscopy data</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub- 100 nm spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), some spectral signatures may not be known in advance so other approaches must be used. We describe here an approach that uses principal component analysis to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides.</description><subject>ADVANCED PHOTON SOURCE</subject><subject>Cluster Analysis</subject><subject>DATA ANALYSIS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MICROSCOPY</subject><subject>Organic Chemicals - analysis</subject><subject>Principal Component Analysis</subject><subject>SOFT X RADIATION</subject><subject>Spectrometry, X-Ray Emission - methods</subject><subject>X-ray microscopy</subject><subject>X-ray spectromicroscopy</subject><subject>X-RAY SPECTROSCOPY</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKAzEUhoMotl5eoQwI7mY8yVyS7JTiDQQ3Cu5CmgumTCc1yQh9ezO04tLV2Xzn_P_5EFpgqDDg7mZdjX0KcuNURQCaCnAFwI7QHDPKS0JJfYzmUENT1pzjGTqLcQ0AGBp2ima4JZh3HM9Ru-zHmEwo5CD7XXSx8LaI3qbiowxyV8StUSn4nBN8VH67K7RM8gKdWNlHc3mY5-j94f5t-VS-vD4-L-9eSlVzkkqrMQXOOJFdw1hrKeErqKVWjNGWMkVxazRdMQLMNtJqyYzsiLHQaM6aelWfo6v9XR-TE1G5ZNSn8sOQSwncQj5Ocaau99Q2-K_RxCQ2LirT93Iwfoyi67qWM0Iz2O3B6ZkYjBXb4DYy7AQGMWkVa_GrVUxaBWCRtebFxSFhXG2M_ls7eMzA7R4w2ca3M2EqawZltAtTV-3dfxk_xT6Lgw</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Lerotic, M</creator><creator>Jacobsen, C</creator><creator>Schäfer, T</creator><creator>Vogt, S</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20040701</creationdate><title>Cluster analysis of soft X-ray spectromicroscopy data</title><author>Lerotic, M ; Jacobsen, C ; Schäfer, T ; Vogt, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-fd1709892a64885f729b03adc887578c715ed7b8208f4afda8ea62ef04d9843b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ADVANCED PHOTON SOURCE</topic><topic>Cluster Analysis</topic><topic>DATA ANALYSIS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MICROSCOPY</topic><topic>Organic Chemicals - analysis</topic><topic>Principal Component Analysis</topic><topic>SOFT X RADIATION</topic><topic>Spectrometry, X-Ray Emission - methods</topic><topic>X-ray microscopy</topic><topic>X-ray spectromicroscopy</topic><topic>X-RAY SPECTROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerotic, M</creatorcontrib><creatorcontrib>Jacobsen, C</creatorcontrib><creatorcontrib>Schäfer, T</creatorcontrib><creatorcontrib>Vogt, S</creatorcontrib><creatorcontrib>State Univ. of New York (US)</creatorcontrib><creatorcontrib>Advanced Photon Source, Argonne National Lab., Argonne, IL (US)</creatorcontrib><creatorcontrib>Forschungszentrum Karlsruhe (DE)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerotic, M</au><au>Jacobsen, C</au><au>Schäfer, T</au><au>Vogt, S</au><aucorp>State Univ. of New York (US)</aucorp><aucorp>Advanced Photon Source, Argonne National Lab., Argonne, IL (US)</aucorp><aucorp>Forschungszentrum Karlsruhe (DE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster analysis of soft X-ray spectromicroscopy data</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>100</volume><issue>1</issue><spage>35</spage><epage>57</epage><pages>35-57</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Soft X-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub- 100 nm spatial resolution. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), some spectral signatures may not be known in advance so other approaches must be used. We describe here an approach that uses principal component analysis to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15219691</pmid><doi>10.1016/j.ultramic.2004.01.008</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2004-07, Vol.100 (1), p.35-57
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_66659827
source MEDLINE; Elsevier ScienceDirect Journals
subjects ADVANCED PHOTON SOURCE
Cluster Analysis
DATA ANALYSIS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MICROSCOPY
Organic Chemicals - analysis
Principal Component Analysis
SOFT X RADIATION
Spectrometry, X-Ray Emission - methods
X-ray microscopy
X-ray spectromicroscopy
X-RAY SPECTROSCOPY
title Cluster analysis of soft X-ray spectromicroscopy data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20analysis%20of%20soft%20X-ray%20spectromicroscopy%20data&rft.jtitle=Ultramicroscopy&rft.au=Lerotic,%20M&rft.aucorp=State%20Univ.%20of%20New%20York%20(US)&rft.date=2004-07-01&rft.volume=100&rft.issue=1&rft.spage=35&rft.epage=57&rft.pages=35-57&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2004.01.008&rft_dat=%3Cproquest_osti_%3E66659827%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66659827&rft_id=info:pmid/15219691&rft_els_id=S0304399104000166&rfr_iscdi=true