Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments

Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important clue in a search for relevant sensory signals. We explore this relation and intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2004-07, Vol.17 (1), p.47-56
Hauptverfasser: Edin, Fredrik, Machens, Christian K, Schütze, Hartmut, Herz, Andreas V M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 47
container_title Journal of computational neuroscience
container_volume 17
creator Edin, Fredrik
Machens, Christian K
Schütze, Hartmut
Herz, Andreas V M
description Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important clue in a search for relevant sensory signals. We explore this relation and introduce a novel iterative algorithm that allows one to find stimuli that are reliably represented by the sensory system under study. To assess the quality of a neural representation, we use stimulus reconstruction methods. The algorithm starts with the presentation of an initial stimulus (e.g. white noise). The evoked spike train is recorded and used to reconstruct the stimulus online. Within a closed-loop setup, this reconstruction is then played back to the sensory system. Iterating this procedure, the newly generated stimuli can be better and better reconstructed. We demonstrate the feasibility of this method by applying it to auditory receptor neurons in locusts. Our data show that the optimal stimuli often exhibit pronounced sub-threshold periods that are interrupted by short, yet intense pulses. Similar results are obtained for simple model neurons and suggest that these stimuli are encoded with high reliability by a large class of neurons.
doi_str_mv 10.1023/B:JCNS.0000023868.18446.a2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66653053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17819957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7bc468e2981d1d57c30655bc291f57c74b1f73f5908a1a1ab04cb21532aab72f3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTab_oUicujNG43G-vDemiVfJbSHtGcha-VUwWu5kh2Sf19tshDopdJBCJ6ZYd6HkFNgK2Acz87X3zbf71ZsfzhqqVeg61quLH9HFiAUVlIrfE8WrOFNJRDwiBzn_FBwrYB9JEcgOGgUuCDuztvkfofhnnYx0ThOYWd7mv2QY3qmOdwPts9rGiaf7BQePc2FmPs50-RdHPKUZjeFONAwUNfH7LdVH-NI_dPoU9j5Ycon5ENXmvhPh3dJfl1e_NxcV7c_rm42X28rhwqnSrWultrzRsMWtkI5ZFKI1vEGuvJTdQudwk40TFsot2W1azkI5Na2ine4JF9e-44p_pl9nswuZOf73g4-ztlIKQUygf8FQWlomhLkkpz-Az7EOe0TMRxUXddaygKtXyGXYs7Jd2Ysi9v0bICZvTBzbvbCzJsw8yLMWF6KPx8mzO3Ob99KD4bwL6Aik54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217444866</pqid></control><display><type>article</type><title>Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Edin, Fredrik ; Machens, Christian K ; Schütze, Hartmut ; Herz, Andreas V M</creator><creatorcontrib>Edin, Fredrik ; Machens, Christian K ; Schütze, Hartmut ; Herz, Andreas V M</creatorcontrib><description>Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important clue in a search for relevant sensory signals. We explore this relation and introduce a novel iterative algorithm that allows one to find stimuli that are reliably represented by the sensory system under study. To assess the quality of a neural representation, we use stimulus reconstruction methods. The algorithm starts with the presentation of an initial stimulus (e.g. white noise). The evoked spike train is recorded and used to reconstruct the stimulus online. Within a closed-loop setup, this reconstruction is then played back to the sensory system. Iterating this procedure, the newly generated stimuli can be better and better reconstructed. We demonstrate the feasibility of this method by applying it to auditory receptor neurons in locusts. Our data show that the optimal stimuli often exhibit pronounced sub-threshold periods that are interrupted by short, yet intense pulses. Similar results are obtained for simple model neurons and suggest that these stimuli are encoded with high reliability by a large class of neurons.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1023/B:JCNS.0000023868.18446.a2</identifier><identifier>PMID: 15218353</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Acoustic Stimulation - methods ; Action Potentials - physiology ; Algorithms ; Animals ; Auditory Pathways - physiology ; Electrophysiology ; Models, Neurological ; Neurons - physiology ; Neurons, Afferent - physiology ; Sensory Receptor Cells - physiology</subject><ispartof>Journal of computational neuroscience, 2004-07, Vol.17 (1), p.47-56</ispartof><rights>Copyright 2004 Kluwer Academic Plublishers</rights><rights>Copyright National Library of Medicine - MEDLINE Abstracts Jul-Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7bc468e2981d1d57c30655bc291f57c74b1f73f5908a1a1ab04cb21532aab72f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15218353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edin, Fredrik</creatorcontrib><creatorcontrib>Machens, Christian K</creatorcontrib><creatorcontrib>Schütze, Hartmut</creatorcontrib><creatorcontrib>Herz, Andreas V M</creatorcontrib><title>Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><description>Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important clue in a search for relevant sensory signals. We explore this relation and introduce a novel iterative algorithm that allows one to find stimuli that are reliably represented by the sensory system under study. To assess the quality of a neural representation, we use stimulus reconstruction methods. The algorithm starts with the presentation of an initial stimulus (e.g. white noise). The evoked spike train is recorded and used to reconstruct the stimulus online. Within a closed-loop setup, this reconstruction is then played back to the sensory system. Iterating this procedure, the newly generated stimuli can be better and better reconstructed. We demonstrate the feasibility of this method by applying it to auditory receptor neurons in locusts. Our data show that the optimal stimuli often exhibit pronounced sub-threshold periods that are interrupted by short, yet intense pulses. Similar results are obtained for simple model neurons and suggest that these stimuli are encoded with high reliability by a large class of neurons.</description><subject>Acoustic Stimulation - methods</subject><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Auditory Pathways - physiology</subject><subject>Electrophysiology</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Sensory Receptor Cells - physiology</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTab_oUicujNG43G-vDemiVfJbSHtGcha-VUwWu5kh2Sf19tshDopdJBCJ6ZYd6HkFNgK2Acz87X3zbf71ZsfzhqqVeg61quLH9HFiAUVlIrfE8WrOFNJRDwiBzn_FBwrYB9JEcgOGgUuCDuztvkfofhnnYx0ThOYWd7mv2QY3qmOdwPts9rGiaf7BQePc2FmPs50-RdHPKUZjeFONAwUNfH7LdVH-NI_dPoU9j5Ycon5ENXmvhPh3dJfl1e_NxcV7c_rm42X28rhwqnSrWultrzRsMWtkI5ZFKI1vEGuvJTdQudwk40TFsot2W1azkI5Na2ine4JF9e-44p_pl9nswuZOf73g4-ztlIKQUygf8FQWlomhLkkpz-Az7EOe0TMRxUXddaygKtXyGXYs7Jd2Ysi9v0bICZvTBzbvbCzJsw8yLMWF6KPx8mzO3Ob99KD4bwL6Aik54</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Edin, Fredrik</creator><creator>Machens, Christian K</creator><creator>Schütze, Hartmut</creator><creator>Herz, Andreas V M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments</title><author>Edin, Fredrik ; Machens, Christian K ; Schütze, Hartmut ; Herz, Andreas V M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7bc468e2981d1d57c30655bc291f57c74b1f73f5908a1a1ab04cb21532aab72f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Auditory Pathways - physiology</topic><topic>Electrophysiology</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Sensory Receptor Cells - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edin, Fredrik</creatorcontrib><creatorcontrib>Machens, Christian K</creatorcontrib><creatorcontrib>Schütze, Hartmut</creatorcontrib><creatorcontrib>Herz, Andreas V M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edin, Fredrik</au><au>Machens, Christian K</au><au>Schütze, Hartmut</au><au>Herz, Andreas V M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments</atitle><jtitle>Journal of computational neuroscience</jtitle><addtitle>J Comput Neurosci</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>17</volume><issue>1</issue><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important clue in a search for relevant sensory signals. We explore this relation and introduce a novel iterative algorithm that allows one to find stimuli that are reliably represented by the sensory system under study. To assess the quality of a neural representation, we use stimulus reconstruction methods. The algorithm starts with the presentation of an initial stimulus (e.g. white noise). The evoked spike train is recorded and used to reconstruct the stimulus online. Within a closed-loop setup, this reconstruction is then played back to the sensory system. Iterating this procedure, the newly generated stimuli can be better and better reconstructed. We demonstrate the feasibility of this method by applying it to auditory receptor neurons in locusts. Our data show that the optimal stimuli often exhibit pronounced sub-threshold periods that are interrupted by short, yet intense pulses. Similar results are obtained for simple model neurons and suggest that these stimuli are encoded with high reliability by a large class of neurons.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15218353</pmid><doi>10.1023/B:JCNS.0000023868.18446.a2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5313
ispartof Journal of computational neuroscience, 2004-07, Vol.17 (1), p.47-56
issn 0929-5313
1573-6873
language eng
recordid cdi_proquest_miscellaneous_66653053
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acoustic Stimulation - methods
Action Potentials - physiology
Algorithms
Animals
Auditory Pathways - physiology
Electrophysiology
Models, Neurological
Neurons - physiology
Neurons, Afferent - physiology
Sensory Receptor Cells - physiology
title Searching for optimal sensory signals: iterative stimulus reconstruction in closed-loop experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20for%20optimal%20sensory%20signals:%20iterative%20stimulus%20reconstruction%20in%20closed-loop%20experiments&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Edin,%20Fredrik&rft.date=2004-07-01&rft.volume=17&rft.issue=1&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1023/B:JCNS.0000023868.18446.a2&rft_dat=%3Cproquest_cross%3E17819957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217444866&rft_id=info:pmid/15218353&rfr_iscdi=true