Error propagation and scaling for tropical forest biomass estimates
The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-ter...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2004-03, Vol.359 (1443), p.409-420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 1443 |
container_start_page | 409 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 359 |
creator | Chave, Jerome Condit, Richard Aguilar, Salomon Hernandez, Andres Lao, Suzanne Perez, Rolando |
description | The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers.
Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation.
To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with
AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could
lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric
model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness
of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but
rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104
m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find
that the most important source of error is currently related to the choice of the allometric model. More work should be devoted
to improving the predictive power of allometric models for biomass. |
doi_str_mv | 10.1098/rstb.2003.1425 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66647175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4142191</jstor_id><sourcerecordid>4142191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</originalsourceid><addsrcrecordid>eNqFUcuO0zAUtRCIKYUtK4SyYpfit-MNCFXDQxqJDawtx3FaV2kcbBfUv-dGqQa6gFnZV-fh43sQeknwhmDdvE25tBuKMdsQTsUjtCJckZpqhR-jFdaS1g1n8gY9y_mAMdZC8afohghKKNZshba3KcVUTSlOdmdLiGNlx67Kzg5h3FU9YAWwAPM8-FyqNsSjzbmCezja4vNz9KS3Q_YvLucaff94-237ub77-unL9sNd7SSXpWYEO86aXrWKa956ZVtite-E7JnosWw65QRuraZK8r6hVGNvSetURzlpqGVr9G7xnU7t0XfOjyXZwUwJYqSziTaYa2QMe7OLPw2RmjEmwODNxSDFHyfIb44hOz8MdvTxlI2UEranHiYSrZXinD5MVEJLwSUQNwvRpZhz8v19bILN3KSZmzRzk2ZuEgSv__7sH_qlOiCwhZDiGbYeXfDlbA7xlEYY_237alEdconp3pUDSDQBGC_wPuz2v0Ly5sodhgnsmNDgxpnhEGSN3v9XMr_v4ligkyuh6U8DlNf17DclS94t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17596546</pqid></control><display><type>article</type><title>Error propagation and scaling for tropical forest biomass estimates</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando</creator><contributor>Phillips, O. L. ; Malhi, Y.</contributor><creatorcontrib>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando ; Phillips, O. L. ; Malhi, Y.</creatorcontrib><description>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers.
Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation.
To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with
AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could
lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric
model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness
of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but
rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104
m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find
that the most important source of error is currently related to the choice of the allometric model. More work should be devoted
to improving the predictive power of allometric models for biomass.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2003.1425</identifier><identifier>PMID: 15212093</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Above-Ground Biomass ; Aboveground biomass ; Agroforestry ; Allometric Equation ; Biomass ; Contemporary Change in Tropical Forests ; Datasets ; Error Propagation ; Error rates ; Models, Biological ; Montane forests ; Panama ; Research Design ; Sampling ; Selection Bias ; Street trees ; Trees ; Tropical Climate ; Tropical Forest ; Tropical forests ; Tropical rain forests ; Uncertainty</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2004-03, Vol.359 (1443), p.409-420</ispartof><rights>Copyright 2004 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</citedby><cites>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4142191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4142191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15212093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Phillips, O. L.</contributor><contributor>Malhi, Y.</contributor><creatorcontrib>Chave, Jerome</creatorcontrib><creatorcontrib>Condit, Richard</creatorcontrib><creatorcontrib>Aguilar, Salomon</creatorcontrib><creatorcontrib>Hernandez, Andres</creatorcontrib><creatorcontrib>Lao, Suzanne</creatorcontrib><creatorcontrib>Perez, Rolando</creatorcontrib><title>Error propagation and scaling for tropical forest biomass estimates</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers.
Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation.
To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with
AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could
lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric
model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness
of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but
rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104
m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find
that the most important source of error is currently related to the choice of the allometric model. More work should be devoted
to improving the predictive power of allometric models for biomass.</description><subject>Above-Ground Biomass</subject><subject>Aboveground biomass</subject><subject>Agroforestry</subject><subject>Allometric Equation</subject><subject>Biomass</subject><subject>Contemporary Change in Tropical Forests</subject><subject>Datasets</subject><subject>Error Propagation</subject><subject>Error rates</subject><subject>Models, Biological</subject><subject>Montane forests</subject><subject>Panama</subject><subject>Research Design</subject><subject>Sampling</subject><subject>Selection Bias</subject><subject>Street trees</subject><subject>Trees</subject><subject>Tropical Climate</subject><subject>Tropical Forest</subject><subject>Tropical forests</subject><subject>Tropical rain forests</subject><subject>Uncertainty</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuO0zAUtRCIKYUtK4SyYpfit-MNCFXDQxqJDawtx3FaV2kcbBfUv-dGqQa6gFnZV-fh43sQeknwhmDdvE25tBuKMdsQTsUjtCJckZpqhR-jFdaS1g1n8gY9y_mAMdZC8afohghKKNZshba3KcVUTSlOdmdLiGNlx67Kzg5h3FU9YAWwAPM8-FyqNsSjzbmCezja4vNz9KS3Q_YvLucaff94-237ub77-unL9sNd7SSXpWYEO86aXrWKa956ZVtite-E7JnosWw65QRuraZK8r6hVGNvSetURzlpqGVr9G7xnU7t0XfOjyXZwUwJYqSziTaYa2QMe7OLPw2RmjEmwODNxSDFHyfIb44hOz8MdvTxlI2UEranHiYSrZXinD5MVEJLwSUQNwvRpZhz8v19bILN3KSZmzRzk2ZuEgSv__7sH_qlOiCwhZDiGbYeXfDlbA7xlEYY_237alEdconp3pUDSDQBGC_wPuz2v0Ly5sodhgnsmNDgxpnhEGSN3v9XMr_v4ligkyuh6U8DlNf17DclS94t</recordid><startdate>20040329</startdate><enddate>20040329</enddate><creator>Chave, Jerome</creator><creator>Condit, Richard</creator><creator>Aguilar, Salomon</creator><creator>Hernandez, Andres</creator><creator>Lao, Suzanne</creator><creator>Perez, Rolando</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040329</creationdate><title>Error propagation and scaling for tropical forest biomass estimates</title><author>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Above-Ground Biomass</topic><topic>Aboveground biomass</topic><topic>Agroforestry</topic><topic>Allometric Equation</topic><topic>Biomass</topic><topic>Contemporary Change in Tropical Forests</topic><topic>Datasets</topic><topic>Error Propagation</topic><topic>Error rates</topic><topic>Models, Biological</topic><topic>Montane forests</topic><topic>Panama</topic><topic>Research Design</topic><topic>Sampling</topic><topic>Selection Bias</topic><topic>Street trees</topic><topic>Trees</topic><topic>Tropical Climate</topic><topic>Tropical Forest</topic><topic>Tropical forests</topic><topic>Tropical rain forests</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chave, Jerome</creatorcontrib><creatorcontrib>Condit, Richard</creatorcontrib><creatorcontrib>Aguilar, Salomon</creatorcontrib><creatorcontrib>Hernandez, Andres</creatorcontrib><creatorcontrib>Lao, Suzanne</creatorcontrib><creatorcontrib>Perez, Rolando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chave, Jerome</au><au>Condit, Richard</au><au>Aguilar, Salomon</au><au>Hernandez, Andres</au><au>Lao, Suzanne</au><au>Perez, Rolando</au><au>Phillips, O. L.</au><au>Malhi, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error propagation and scaling for tropical forest biomass estimates</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2004-03-29</date><risdate>2004</risdate><volume>359</volume><issue>1443</issue><spage>409</spage><epage>420</epage><pages>409-420</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers.
Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation.
To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with
AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could
lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric
model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness
of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but
rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104
m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find
that the most important source of error is currently related to the choice of the allometric model. More work should be devoted
to improving the predictive power of allometric models for biomass.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15212093</pmid><doi>10.1098/rstb.2003.1425</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2004-03, Vol.359 (1443), p.409-420 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_proquest_miscellaneous_66647175 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Above-Ground Biomass Aboveground biomass Agroforestry Allometric Equation Biomass Contemporary Change in Tropical Forests Datasets Error Propagation Error rates Models, Biological Montane forests Panama Research Design Sampling Selection Bias Street trees Trees Tropical Climate Tropical Forest Tropical forests Tropical rain forests Uncertainty |
title | Error propagation and scaling for tropical forest biomass estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20propagation%20and%20scaling%20for%20tropical%20forest%20biomass%20estimates&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Chave,%20Jerome&rft.date=2004-03-29&rft.volume=359&rft.issue=1443&rft.spage=409&rft.epage=420&rft.pages=409-420&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2003.1425&rft_dat=%3Cjstor_proqu%3E4142191%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17596546&rft_id=info:pmid/15212093&rft_jstor_id=4142191&rfr_iscdi=true |