Error propagation and scaling for tropical forest biomass estimates

The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2004-03, Vol.359 (1443), p.409-420
Hauptverfasser: Chave, Jerome, Condit, Richard, Aguilar, Salomon, Hernandez, Andres, Lao, Suzanne, Perez, Rolando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 1443
container_start_page 409
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 359
creator Chave, Jerome
Condit, Richard
Aguilar, Salomon
Hernandez, Andres
Lao, Suzanne
Perez, Rolando
description The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104 m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass.
doi_str_mv 10.1098/rstb.2003.1425
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66647175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4142191</jstor_id><sourcerecordid>4142191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</originalsourceid><addsrcrecordid>eNqFUcuO0zAUtRCIKYUtK4SyYpfit-MNCFXDQxqJDawtx3FaV2kcbBfUv-dGqQa6gFnZV-fh43sQeknwhmDdvE25tBuKMdsQTsUjtCJckZpqhR-jFdaS1g1n8gY9y_mAMdZC8afohghKKNZshba3KcVUTSlOdmdLiGNlx67Kzg5h3FU9YAWwAPM8-FyqNsSjzbmCezja4vNz9KS3Q_YvLucaff94-237ub77-unL9sNd7SSXpWYEO86aXrWKa956ZVtite-E7JnosWw65QRuraZK8r6hVGNvSetURzlpqGVr9G7xnU7t0XfOjyXZwUwJYqSziTaYa2QMe7OLPw2RmjEmwODNxSDFHyfIb44hOz8MdvTxlI2UEranHiYSrZXinD5MVEJLwSUQNwvRpZhz8v19bILN3KSZmzRzk2ZuEgSv__7sH_qlOiCwhZDiGbYeXfDlbA7xlEYY_237alEdconp3pUDSDQBGC_wPuz2v0Ly5sodhgnsmNDgxpnhEGSN3v9XMr_v4ligkyuh6U8DlNf17DclS94t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17596546</pqid></control><display><type>article</type><title>Error propagation and scaling for tropical forest biomass estimates</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando</creator><contributor>Phillips, O. L. ; Malhi, Y.</contributor><creatorcontrib>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando ; Phillips, O. L. ; Malhi, Y.</creatorcontrib><description>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104 m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2003.1425</identifier><identifier>PMID: 15212093</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Above-Ground Biomass ; Aboveground biomass ; Agroforestry ; Allometric Equation ; Biomass ; Contemporary Change in Tropical Forests ; Datasets ; Error Propagation ; Error rates ; Models, Biological ; Montane forests ; Panama ; Research Design ; Sampling ; Selection Bias ; Street trees ; Trees ; Tropical Climate ; Tropical Forest ; Tropical forests ; Tropical rain forests ; Uncertainty</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2004-03, Vol.359 (1443), p.409-420</ispartof><rights>Copyright 2004 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</citedby><cites>FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4142191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4142191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15212093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Phillips, O. L.</contributor><contributor>Malhi, Y.</contributor><creatorcontrib>Chave, Jerome</creatorcontrib><creatorcontrib>Condit, Richard</creatorcontrib><creatorcontrib>Aguilar, Salomon</creatorcontrib><creatorcontrib>Hernandez, Andres</creatorcontrib><creatorcontrib>Lao, Suzanne</creatorcontrib><creatorcontrib>Perez, Rolando</creatorcontrib><title>Error propagation and scaling for tropical forest biomass estimates</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104 m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass.</description><subject>Above-Ground Biomass</subject><subject>Aboveground biomass</subject><subject>Agroforestry</subject><subject>Allometric Equation</subject><subject>Biomass</subject><subject>Contemporary Change in Tropical Forests</subject><subject>Datasets</subject><subject>Error Propagation</subject><subject>Error rates</subject><subject>Models, Biological</subject><subject>Montane forests</subject><subject>Panama</subject><subject>Research Design</subject><subject>Sampling</subject><subject>Selection Bias</subject><subject>Street trees</subject><subject>Trees</subject><subject>Tropical Climate</subject><subject>Tropical Forest</subject><subject>Tropical forests</subject><subject>Tropical rain forests</subject><subject>Uncertainty</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuO0zAUtRCIKYUtK4SyYpfit-MNCFXDQxqJDawtx3FaV2kcbBfUv-dGqQa6gFnZV-fh43sQeknwhmDdvE25tBuKMdsQTsUjtCJckZpqhR-jFdaS1g1n8gY9y_mAMdZC8afohghKKNZshba3KcVUTSlOdmdLiGNlx67Kzg5h3FU9YAWwAPM8-FyqNsSjzbmCezja4vNz9KS3Q_YvLucaff94-237ub77-unL9sNd7SSXpWYEO86aXrWKa956ZVtite-E7JnosWw65QRuraZK8r6hVGNvSetURzlpqGVr9G7xnU7t0XfOjyXZwUwJYqSziTaYa2QMe7OLPw2RmjEmwODNxSDFHyfIb44hOz8MdvTxlI2UEranHiYSrZXinD5MVEJLwSUQNwvRpZhz8v19bILN3KSZmzRzk2ZuEgSv__7sH_qlOiCwhZDiGbYeXfDlbA7xlEYY_237alEdconp3pUDSDQBGC_wPuz2v0Ly5sodhgnsmNDgxpnhEGSN3v9XMr_v4ligkyuh6U8DlNf17DclS94t</recordid><startdate>20040329</startdate><enddate>20040329</enddate><creator>Chave, Jerome</creator><creator>Condit, Richard</creator><creator>Aguilar, Salomon</creator><creator>Hernandez, Andres</creator><creator>Lao, Suzanne</creator><creator>Perez, Rolando</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040329</creationdate><title>Error propagation and scaling for tropical forest biomass estimates</title><author>Chave, Jerome ; Condit, Richard ; Aguilar, Salomon ; Hernandez, Andres ; Lao, Suzanne ; Perez, Rolando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-310c438f7b7494be7ab1a9ed56f35f068d7c50ba92764f82290ea1bc7d24182a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Above-Ground Biomass</topic><topic>Aboveground biomass</topic><topic>Agroforestry</topic><topic>Allometric Equation</topic><topic>Biomass</topic><topic>Contemporary Change in Tropical Forests</topic><topic>Datasets</topic><topic>Error Propagation</topic><topic>Error rates</topic><topic>Models, Biological</topic><topic>Montane forests</topic><topic>Panama</topic><topic>Research Design</topic><topic>Sampling</topic><topic>Selection Bias</topic><topic>Street trees</topic><topic>Trees</topic><topic>Tropical Climate</topic><topic>Tropical Forest</topic><topic>Tropical forests</topic><topic>Tropical rain forests</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chave, Jerome</creatorcontrib><creatorcontrib>Condit, Richard</creatorcontrib><creatorcontrib>Aguilar, Salomon</creatorcontrib><creatorcontrib>Hernandez, Andres</creatorcontrib><creatorcontrib>Lao, Suzanne</creatorcontrib><creatorcontrib>Perez, Rolando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chave, Jerome</au><au>Condit, Richard</au><au>Aguilar, Salomon</au><au>Hernandez, Andres</au><au>Lao, Suzanne</au><au>Perez, Rolando</au><au>Phillips, O. L.</au><au>Malhi, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error propagation and scaling for tropical forest biomass estimates</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2004-03-29</date><risdate>2004</risdate><volume>359</volume><issue>1443</issue><spage>409</spage><epage>420</epage><pages>409-420</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 104 m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15212093</pmid><doi>10.1098/rstb.2003.1425</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2004-03, Vol.359 (1443), p.409-420
issn 0962-8436
1471-2970
language eng
recordid cdi_proquest_miscellaneous_66647175
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Above-Ground Biomass
Aboveground biomass
Agroforestry
Allometric Equation
Biomass
Contemporary Change in Tropical Forests
Datasets
Error Propagation
Error rates
Models, Biological
Montane forests
Panama
Research Design
Sampling
Selection Bias
Street trees
Trees
Tropical Climate
Tropical Forest
Tropical forests
Tropical rain forests
Uncertainty
title Error propagation and scaling for tropical forest biomass estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20propagation%20and%20scaling%20for%20tropical%20forest%20biomass%20estimates&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Chave,%20Jerome&rft.date=2004-03-29&rft.volume=359&rft.issue=1443&rft.spage=409&rft.epage=420&rft.pages=409-420&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2003.1425&rft_dat=%3Cjstor_proqu%3E4142191%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17596546&rft_id=info:pmid/15212093&rft_jstor_id=4142191&rfr_iscdi=true