Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods
A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified r...
Gespeichert in:
Veröffentlicht in: | International journal of psychophysiology 2004-07, Vol.53 (2), p.105-119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 2 |
container_start_page | 105 |
container_title | International journal of psychophysiology |
container_volume | 53 |
creator | Wallstrom, Garrick L Kass, Robert E Miller, Anita Cohn, Jeffrey F Fox, Nathan A |
description | A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures. |
doi_str_mv | 10.1016/j.ijpsycho.2004.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66640990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167876004000510</els_id><sourcerecordid>66640990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</originalsourceid><addsrcrecordid>eNqF0U1vFCEYwHHSaNpt9Ss0XPQ2IzAML55smrWaNPGiZ8LCg8tmZtgCY9Jv76w7jd48kZDfA-QPQreUtJRQ8eHQxsOxPLt9ahkhvCVdS4i8QBuqJGuk0PIV2ixQNkoKcoWuSzmQRVCtL9EV7RklTKkNerqbaxptjQ67lDO4GtOEU8DJzYPN2OYag3W14Djhuge83T58xHbB49HmWM44w88MpSyjzc4W8NhO_g9JE0x13Ruh7pMvb9DrYIcCb9f1Bv34vP1-_6V5_Pbw9f7usXFckNoo0gsSuLahEyC1orbTID33jvXQd0F6umOOSkE159ArQaiyO8sC971iknc36P353GNOTzOUasZYHAyDnSDNxQghONGaLFCcocuplAzBHHMcbX42lJhTbHMwL7HNKbYhnVlSLoO36w3zbgT_d2ytu4B3K7DF2SFkO7lY_nGaiU6e3Kezg6XHrwjZFBdhcuDj6UeMT_F_b_kN1yGhrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66640990</pqid></control><display><type>article</type><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</creator><creatorcontrib>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</creatorcontrib><description>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</description><identifier>ISSN: 0167-8760</identifier><identifier>EISSN: 1872-7697</identifier><identifier>DOI: 10.1016/j.ijpsycho.2004.03.007</identifier><identifier>PMID: 15210288</identifier><identifier>CODEN: IJPSEE</identifier><language>eng</language><publisher>Shannon: Elsevier B.V</publisher><subject>Adaptive filter ; Adult ; Analysis ; Bayes Theorem ; Behavioral psychophysiology ; Biological and medical sciences ; Electroencephalography ; Electrooculography ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Independent components analysis ; Ocular artifact ; Ocular Physiological Phenomena ; Principal Component Analysis ; Principal components ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Regression ; Regression Analysis ; Statistics. Mathematics</subject><ispartof>International journal of psychophysiology, 2004-07, Vol.53 (2), p.105-119</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</citedby><cites>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpsycho.2004.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15926378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15210288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallstrom, Garrick L</creatorcontrib><creatorcontrib>Kass, Robert E</creatorcontrib><creatorcontrib>Miller, Anita</creatorcontrib><creatorcontrib>Cohn, Jeffrey F</creatorcontrib><creatorcontrib>Fox, Nathan A</creatorcontrib><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><title>International journal of psychophysiology</title><addtitle>Int J Psychophysiol</addtitle><description>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</description><subject>Adaptive filter</subject><subject>Adult</subject><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Electroencephalography</subject><subject>Electrooculography</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Independent components analysis</subject><subject>Ocular artifact</subject><subject>Ocular Physiological Phenomena</subject><subject>Principal Component Analysis</subject><subject>Principal components</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Regression</subject><subject>Regression Analysis</subject><subject>Statistics. Mathematics</subject><issn>0167-8760</issn><issn>1872-7697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vFCEYwHHSaNpt9Ss0XPQ2IzAML55smrWaNPGiZ8LCg8tmZtgCY9Jv76w7jd48kZDfA-QPQreUtJRQ8eHQxsOxPLt9ahkhvCVdS4i8QBuqJGuk0PIV2ixQNkoKcoWuSzmQRVCtL9EV7RklTKkNerqbaxptjQ67lDO4GtOEU8DJzYPN2OYag3W14Djhuge83T58xHbB49HmWM44w88MpSyjzc4W8NhO_g9JE0x13Ruh7pMvb9DrYIcCb9f1Bv34vP1-_6V5_Pbw9f7usXFckNoo0gsSuLahEyC1orbTID33jvXQd0F6umOOSkE159ArQaiyO8sC971iknc36P353GNOTzOUasZYHAyDnSDNxQghONGaLFCcocuplAzBHHMcbX42lJhTbHMwL7HNKbYhnVlSLoO36w3zbgT_d2ytu4B3K7DF2SFkO7lY_nGaiU6e3Kezg6XHrwjZFBdhcuDj6UeMT_F_b_kN1yGhrQ</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Wallstrom, Garrick L</creator><creator>Kass, Robert E</creator><creator>Miller, Anita</creator><creator>Cohn, Jeffrey F</creator><creator>Fox, Nathan A</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><author>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive filter</topic><topic>Adult</topic><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Electroencephalography</topic><topic>Electrooculography</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Independent components analysis</topic><topic>Ocular artifact</topic><topic>Ocular Physiological Phenomena</topic><topic>Principal Component Analysis</topic><topic>Principal components</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Regression</topic><topic>Regression Analysis</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallstrom, Garrick L</creatorcontrib><creatorcontrib>Kass, Robert E</creatorcontrib><creatorcontrib>Miller, Anita</creatorcontrib><creatorcontrib>Cohn, Jeffrey F</creatorcontrib><creatorcontrib>Fox, Nathan A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallstrom, Garrick L</au><au>Kass, Robert E</au><au>Miller, Anita</au><au>Cohn, Jeffrey F</au><au>Fox, Nathan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</atitle><jtitle>International journal of psychophysiology</jtitle><addtitle>Int J Psychophysiol</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>53</volume><issue>2</issue><spage>105</spage><epage>119</epage><pages>105-119</pages><issn>0167-8760</issn><eissn>1872-7697</eissn><coden>IJPSEE</coden><abstract>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</abstract><cop>Shannon</cop><pub>Elsevier B.V</pub><pmid>15210288</pmid><doi>10.1016/j.ijpsycho.2004.03.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8760 |
ispartof | International journal of psychophysiology, 2004-07, Vol.53 (2), p.105-119 |
issn | 0167-8760 1872-7697 |
language | eng |
recordid | cdi_proquest_miscellaneous_66640990 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adaptive filter Adult Analysis Bayes Theorem Behavioral psychophysiology Biological and medical sciences Electroencephalography Electrooculography Electrophysiology Fundamental and applied biological sciences. Psychology Humans Independent components analysis Ocular artifact Ocular Physiological Phenomena Principal Component Analysis Principal components Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology Regression Regression Analysis Statistics. Mathematics |
title | Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20correction%20of%20ocular%20artifacts%20in%20the%20EEG:%20a%20comparison%20of%20regression-based%20and%20component-based%20methods&rft.jtitle=International%20journal%20of%20psychophysiology&rft.au=Wallstrom,%20Garrick%20L&rft.date=2004-07-01&rft.volume=53&rft.issue=2&rft.spage=105&rft.epage=119&rft.pages=105-119&rft.issn=0167-8760&rft.eissn=1872-7697&rft.coden=IJPSEE&rft_id=info:doi/10.1016/j.ijpsycho.2004.03.007&rft_dat=%3Cproquest_cross%3E66640990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66640990&rft_id=info:pmid/15210288&rft_els_id=S0167876004000510&rfr_iscdi=true |