Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods

A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of psychophysiology 2004-07, Vol.53 (2), p.105-119
Hauptverfasser: Wallstrom, Garrick L, Kass, Robert E, Miller, Anita, Cohn, Jeffrey F, Fox, Nathan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 105
container_title International journal of psychophysiology
container_volume 53
creator Wallstrom, Garrick L
Kass, Robert E
Miller, Anita
Cohn, Jeffrey F
Fox, Nathan A
description A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.
doi_str_mv 10.1016/j.ijpsycho.2004.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66640990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167876004000510</els_id><sourcerecordid>66640990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</originalsourceid><addsrcrecordid>eNqF0U1vFCEYwHHSaNpt9Ss0XPQ2IzAML55smrWaNPGiZ8LCg8tmZtgCY9Jv76w7jd48kZDfA-QPQreUtJRQ8eHQxsOxPLt9ahkhvCVdS4i8QBuqJGuk0PIV2ixQNkoKcoWuSzmQRVCtL9EV7RklTKkNerqbaxptjQ67lDO4GtOEU8DJzYPN2OYag3W14Djhuge83T58xHbB49HmWM44w88MpSyjzc4W8NhO_g9JE0x13Ruh7pMvb9DrYIcCb9f1Bv34vP1-_6V5_Pbw9f7usXFckNoo0gsSuLahEyC1orbTID33jvXQd0F6umOOSkE159ArQaiyO8sC971iknc36P353GNOTzOUasZYHAyDnSDNxQghONGaLFCcocuplAzBHHMcbX42lJhTbHMwL7HNKbYhnVlSLoO36w3zbgT_d2ytu4B3K7DF2SFkO7lY_nGaiU6e3Kezg6XHrwjZFBdhcuDj6UeMT_F_b_kN1yGhrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66640990</pqid></control><display><type>article</type><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</creator><creatorcontrib>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</creatorcontrib><description>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</description><identifier>ISSN: 0167-8760</identifier><identifier>EISSN: 1872-7697</identifier><identifier>DOI: 10.1016/j.ijpsycho.2004.03.007</identifier><identifier>PMID: 15210288</identifier><identifier>CODEN: IJPSEE</identifier><language>eng</language><publisher>Shannon: Elsevier B.V</publisher><subject>Adaptive filter ; Adult ; Analysis ; Bayes Theorem ; Behavioral psychophysiology ; Biological and medical sciences ; Electroencephalography ; Electrooculography ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Independent components analysis ; Ocular artifact ; Ocular Physiological Phenomena ; Principal Component Analysis ; Principal components ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Regression ; Regression Analysis ; Statistics. Mathematics</subject><ispartof>International journal of psychophysiology, 2004-07, Vol.53 (2), p.105-119</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</citedby><cites>FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpsycho.2004.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15926378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15210288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wallstrom, Garrick L</creatorcontrib><creatorcontrib>Kass, Robert E</creatorcontrib><creatorcontrib>Miller, Anita</creatorcontrib><creatorcontrib>Cohn, Jeffrey F</creatorcontrib><creatorcontrib>Fox, Nathan A</creatorcontrib><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><title>International journal of psychophysiology</title><addtitle>Int J Psychophysiol</addtitle><description>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</description><subject>Adaptive filter</subject><subject>Adult</subject><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Electroencephalography</subject><subject>Electrooculography</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Independent components analysis</subject><subject>Ocular artifact</subject><subject>Ocular Physiological Phenomena</subject><subject>Principal Component Analysis</subject><subject>Principal components</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Regression</subject><subject>Regression Analysis</subject><subject>Statistics. Mathematics</subject><issn>0167-8760</issn><issn>1872-7697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vFCEYwHHSaNpt9Ss0XPQ2IzAML55smrWaNPGiZ8LCg8tmZtgCY9Jv76w7jd48kZDfA-QPQreUtJRQ8eHQxsOxPLt9ahkhvCVdS4i8QBuqJGuk0PIV2ixQNkoKcoWuSzmQRVCtL9EV7RklTKkNerqbaxptjQ67lDO4GtOEU8DJzYPN2OYag3W14Djhuge83T58xHbB49HmWM44w88MpSyjzc4W8NhO_g9JE0x13Ruh7pMvb9DrYIcCb9f1Bv34vP1-_6V5_Pbw9f7usXFckNoo0gsSuLahEyC1orbTID33jvXQd0F6umOOSkE159ArQaiyO8sC971iknc36P353GNOTzOUasZYHAyDnSDNxQghONGaLFCcocuplAzBHHMcbX42lJhTbHMwL7HNKbYhnVlSLoO36w3zbgT_d2ytu4B3K7DF2SFkO7lY_nGaiU6e3Kezg6XHrwjZFBdhcuDj6UeMT_F_b_kN1yGhrQ</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Wallstrom, Garrick L</creator><creator>Kass, Robert E</creator><creator>Miller, Anita</creator><creator>Cohn, Jeffrey F</creator><creator>Fox, Nathan A</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</title><author>Wallstrom, Garrick L ; Kass, Robert E ; Miller, Anita ; Cohn, Jeffrey F ; Fox, Nathan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-80560f49af36e7981a39e7d4dc25e53f7d1b2c1761944e586018aba2f4d582743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive filter</topic><topic>Adult</topic><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Electroencephalography</topic><topic>Electrooculography</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Independent components analysis</topic><topic>Ocular artifact</topic><topic>Ocular Physiological Phenomena</topic><topic>Principal Component Analysis</topic><topic>Principal components</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Regression</topic><topic>Regression Analysis</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallstrom, Garrick L</creatorcontrib><creatorcontrib>Kass, Robert E</creatorcontrib><creatorcontrib>Miller, Anita</creatorcontrib><creatorcontrib>Cohn, Jeffrey F</creatorcontrib><creatorcontrib>Fox, Nathan A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallstrom, Garrick L</au><au>Kass, Robert E</au><au>Miller, Anita</au><au>Cohn, Jeffrey F</au><au>Fox, Nathan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods</atitle><jtitle>International journal of psychophysiology</jtitle><addtitle>Int J Psychophysiol</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>53</volume><issue>2</issue><spage>105</spage><epage>119</epage><pages>105-119</pages><issn>0167-8760</issn><eissn>1872-7697</eissn><coden>IJPSEE</coden><abstract>A variety of procedures have been proposed to correct ocular artifacts in the electroencephalogram (EEG), including methods based on regression, principal components analysis (PCA) and independent component analysis (ICA). The current study compared these three methods, and it evaluated a modified regression approach using Bayesian adaptive regression splines to filter the electrooculogram (EOG) before computing correction factors. We applied each artifact correction procedure to real and simulated EEG data of varying epoch lengths and then quantified the impact of correction on spectral parameters of the EEG. We found that the adaptive filter improved regression-based artifact correction. An automated PCA method effectively reduced ocular artifacts and resulted in minimal spectral distortion, whereas ICA correction appeared to distort power between 5 and 20 Hz. In general, reducing the epoch length improved the accuracy of estimating spectral power in the alpha (7.5–12.5 Hz) and beta (12.5–19.5 Hz) bands, but it worsened the accuracy for power in the theta (3.5–7.5 Hz) band and distorted time domain features. Results supported the use of regression-based and PCA-based ocular artifact correction and suggested a need for further studies examining possible spectral distortion from ICA-based correction procedures.</abstract><cop>Shannon</cop><pub>Elsevier B.V</pub><pmid>15210288</pmid><doi>10.1016/j.ijpsycho.2004.03.007</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8760
ispartof International journal of psychophysiology, 2004-07, Vol.53 (2), p.105-119
issn 0167-8760
1872-7697
language eng
recordid cdi_proquest_miscellaneous_66640990
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adaptive filter
Adult
Analysis
Bayes Theorem
Behavioral psychophysiology
Biological and medical sciences
Electroencephalography
Electrooculography
Electrophysiology
Fundamental and applied biological sciences. Psychology
Humans
Independent components analysis
Ocular artifact
Ocular Physiological Phenomena
Principal Component Analysis
Principal components
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Regression
Regression Analysis
Statistics. Mathematics
title Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20correction%20of%20ocular%20artifacts%20in%20the%20EEG:%20a%20comparison%20of%20regression-based%20and%20component-based%20methods&rft.jtitle=International%20journal%20of%20psychophysiology&rft.au=Wallstrom,%20Garrick%20L&rft.date=2004-07-01&rft.volume=53&rft.issue=2&rft.spage=105&rft.epage=119&rft.pages=105-119&rft.issn=0167-8760&rft.eissn=1872-7697&rft.coden=IJPSEE&rft_id=info:doi/10.1016/j.ijpsycho.2004.03.007&rft_dat=%3Cproquest_cross%3E66640990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66640990&rft_id=info:pmid/15210288&rft_els_id=S0167876004000510&rfr_iscdi=true