Using ARIMA Models to Predict Prison Populations

In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box—Jenkins modeling methodology—identification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative criminology 1986-09, Vol.2 (3), p.251-264
Hauptverfasser: Lin, Bin-Shan, MacKenzie, Doris Layton, Gulledge, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 3
container_start_page 251
container_title Journal of quantitative criminology
container_volume 2
creator Lin, Bin-Shan
MacKenzie, Doris Layton
Gulledge, Thomas R.
description In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box—Jenkins modeling methodology—identification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential smoothing model. The results indicate that the time-series model is the superior model as indicated by the usual measures of predictive accuracy. When compared with actual data the predictions appeared sufficiently adequate to meet the needs of the correctional system for short-term planning.
doi_str_mv 10.1007/BF01066529
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_61553895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23365635</jstor_id><sourcerecordid>23365635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-11d516bd4f23824ddfb750d2fb21534601134cb4e3bf19568714e104cc57d3a43</originalsourceid><addsrcrecordid>eNp90M9LwzAcBfAgCs7pxbtQPIgI1e83yTdpj3P4Y7DhEHcubZNKR9fMpD3439sxUfDg6V0-PHiPsXOEWwTQd_ePgKAU8fSAjZC0iLVO00M2Ai2TWBImx-wkhDUApEnCRwxWoW7fo8nrbDGJFs7YJkSdi5bemrrshqyDa6Ol2_ZN3tWuDafsqMqbYM--c8xWjw9v0-d4_vI0m07mcclJdzGiIVSFkRUXCZfGVIUmMLwqOJKQChCFLAtpRVFhSirRKC2CLEvSRuRSjNnVvnfr3UdvQ5dt6lDapslb6_qQKSQSSUoDvP4XolaouSbOB3r5h65d79thRsZhOI5Lteu72aPSuxC8rbKtrze5_8wQst3J2e_JA77Y43XonP-RXAhFSpD4AngcdCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200102465</pqid></control><display><type>article</type><title>Using ARIMA Models to Predict Prison Populations</title><source>HeinOnline Law Journal Library</source><source>Sociological Abstracts</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Bin-Shan ; MacKenzie, Doris Layton ; Gulledge, Thomas R.</creator><creatorcontrib>Lin, Bin-Shan ; MacKenzie, Doris Layton ; Gulledge, Thomas R.</creatorcontrib><description>In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box—Jenkins modeling methodology—identification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential smoothing model. The results indicate that the time-series model is the superior model as indicated by the usual measures of predictive accuracy. When compared with actual data the predictions appeared sufficiently adequate to meet the needs of the correctional system for short-term planning.</description><identifier>ISSN: 0748-4518</identifier><identifier>EISSN: 1573-7799</identifier><identifier>DOI: 10.1007/BF01066529</identifier><identifier>CODEN: JQCRE6</identifier><language>eng</language><publisher>New York: Plenum Press</publisher><subject>Analytical forecasting ; Economic Planning ; Forecasting models ; Louisiana ; Modeling ; Outliers ; Prediction Models ; Prisoners ; Prisons ; Regression analysis ; Social research ; Statistical forecasts ; Time series forecasting ; Time series models ; Weather forecasting</subject><ispartof>Journal of quantitative criminology, 1986-09, Vol.2 (3), p.251-264</ispartof><rights>1986 Plenum Publishing Corporation</rights><rights>Copyright Plenum Publishing Corporation Sep 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-11d516bd4f23824ddfb750d2fb21534601134cb4e3bf19568714e104cc57d3a43</citedby><cites>FETCH-LOGICAL-c257t-11d516bd4f23824ddfb750d2fb21534601134cb4e3bf19568714e104cc57d3a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23365635$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23365635$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,30978,33753,33754,57996,58229</link.rule.ids></links><search><creatorcontrib>Lin, Bin-Shan</creatorcontrib><creatorcontrib>MacKenzie, Doris Layton</creatorcontrib><creatorcontrib>Gulledge, Thomas R.</creatorcontrib><title>Using ARIMA Models to Predict Prison Populations</title><title>Journal of quantitative criminology</title><description>In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box—Jenkins modeling methodology—identification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential smoothing model. The results indicate that the time-series model is the superior model as indicated by the usual measures of predictive accuracy. When compared with actual data the predictions appeared sufficiently adequate to meet the needs of the correctional system for short-term planning.</description><subject>Analytical forecasting</subject><subject>Economic Planning</subject><subject>Forecasting models</subject><subject>Louisiana</subject><subject>Modeling</subject><subject>Outliers</subject><subject>Prediction Models</subject><subject>Prisoners</subject><subject>Prisons</subject><subject>Regression analysis</subject><subject>Social research</subject><subject>Statistical forecasts</subject><subject>Time series forecasting</subject><subject>Time series models</subject><subject>Weather forecasting</subject><issn>0748-4518</issn><issn>1573-7799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp90M9LwzAcBfAgCs7pxbtQPIgI1e83yTdpj3P4Y7DhEHcubZNKR9fMpD3439sxUfDg6V0-PHiPsXOEWwTQd_ePgKAU8fSAjZC0iLVO00M2Ai2TWBImx-wkhDUApEnCRwxWoW7fo8nrbDGJFs7YJkSdi5bemrrshqyDa6Ol2_ZN3tWuDafsqMqbYM--c8xWjw9v0-d4_vI0m07mcclJdzGiIVSFkRUXCZfGVIUmMLwqOJKQChCFLAtpRVFhSirRKC2CLEvSRuRSjNnVvnfr3UdvQ5dt6lDapslb6_qQKSQSSUoDvP4XolaouSbOB3r5h65d79thRsZhOI5Lteu72aPSuxC8rbKtrze5_8wQst3J2e_JA77Y43XonP-RXAhFSpD4AngcdCM</recordid><startdate>19860901</startdate><enddate>19860901</enddate><creator>Lin, Bin-Shan</creator><creator>MacKenzie, Doris Layton</creator><creator>Gulledge, Thomas R.</creator><general>Plenum Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>K7.</scope><scope>WZK</scope><scope>7U3</scope></search><sort><creationdate>19860901</creationdate><title>Using ARIMA Models to Predict Prison Populations</title><author>Lin, Bin-Shan ; MacKenzie, Doris Layton ; Gulledge, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-11d516bd4f23824ddfb750d2fb21534601134cb4e3bf19568714e104cc57d3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Analytical forecasting</topic><topic>Economic Planning</topic><topic>Forecasting models</topic><topic>Louisiana</topic><topic>Modeling</topic><topic>Outliers</topic><topic>Prediction Models</topic><topic>Prisoners</topic><topic>Prisons</topic><topic>Regression analysis</topic><topic>Social research</topic><topic>Statistical forecasts</topic><topic>Time series forecasting</topic><topic>Time series models</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Bin-Shan</creatorcontrib><creatorcontrib>MacKenzie, Doris Layton</creatorcontrib><creatorcontrib>Gulledge, Thomas R.</creatorcontrib><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Sociological Abstracts (Ovid)</collection><collection>Social Services Abstracts</collection><jtitle>Journal of quantitative criminology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Bin-Shan</au><au>MacKenzie, Doris Layton</au><au>Gulledge, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using ARIMA Models to Predict Prison Populations</atitle><jtitle>Journal of quantitative criminology</jtitle><date>1986-09-01</date><risdate>1986</risdate><volume>2</volume><issue>3</issue><spage>251</spage><epage>264</epage><pages>251-264</pages><issn>0748-4518</issn><eissn>1573-7799</eissn><coden>JQCRE6</coden><abstract>In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box—Jenkins modeling methodology—identification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential smoothing model. The results indicate that the time-series model is the superior model as indicated by the usual measures of predictive accuracy. When compared with actual data the predictions appeared sufficiently adequate to meet the needs of the correctional system for short-term planning.</abstract><cop>New York</cop><pub>Plenum Press</pub><doi>10.1007/BF01066529</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4518
ispartof Journal of quantitative criminology, 1986-09, Vol.2 (3), p.251-264
issn 0748-4518
1573-7799
language eng
recordid cdi_proquest_miscellaneous_61553895
source HeinOnline Law Journal Library; Sociological Abstracts; Applied Social Sciences Index & Abstracts (ASSIA); Jstor Complete Legacy; SpringerLink Journals - AutoHoldings
subjects Analytical forecasting
Economic Planning
Forecasting models
Louisiana
Modeling
Outliers
Prediction Models
Prisoners
Prisons
Regression analysis
Social research
Statistical forecasts
Time series forecasting
Time series models
Weather forecasting
title Using ARIMA Models to Predict Prison Populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20ARIMA%20Models%20to%20Predict%20Prison%20Populations&rft.jtitle=Journal%20of%20quantitative%20criminology&rft.au=Lin,%20Bin-Shan&rft.date=1986-09-01&rft.volume=2&rft.issue=3&rft.spage=251&rft.epage=264&rft.pages=251-264&rft.issn=0748-4518&rft.eissn=1573-7799&rft.coden=JQCRE6&rft_id=info:doi/10.1007/BF01066529&rft_dat=%3Cjstor_proqu%3E23365635%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200102465&rft_id=info:pmid/&rft_jstor_id=23365635&rfr_iscdi=true