Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications
In this article, the author develops a model that combines the RC(M) association model with the linear-by-linear association model for the analysis of two-way contingency tables. This combination provides a useful extension of both models that is applicable under many research conditions. A primary...
Gespeichert in:
Veröffentlicht in: | Sociological methods & research 1995-08, Vol.24 (1), p.30-67 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Sociological methods & research |
container_volume | 24 |
creator | ELIASON, SCOTT R. |
description | In this article, the author develops a model that combines the RC(M) association model with the linear-by-linear association model for the analysis of two-way contingency tables. This combination provides a useful extension of both models that is applicable under many research conditions. A primary advantage of the model is that it allows the researcher to assess the influence of manifest factors on the row/column association while controlling for significant latent effects. The model also enables a partitioning of the association into that percentage due to the manifest component(s) and that percentage due to the latent component(s). Data from the 1991 General Social Survey are used to construct a cross-classification of occupations by job-related responsibilities which, in turn, is used to develop and illustrate (a) interpretation of parameter estimates, (b) row/column distance measures and plots in oblique space, and (c) a partitioning of the explained association in the table. |
doi_str_mv | 10.1177/0049124195024001003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61406510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0049124195024001003</sage_id><sourcerecordid>1292222161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7e920491470b373359b3f8df27f31191676b64a651c3da9da3a300b8213e212b3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgCs4ff4GXgOCtmpfXJs1xzJ-w4WWyY0nbdGR0yWw6ZP-9qfMgIi6XEPL5Pl7yCLkCdgsg5R1jqQKegsoYTxkDxvCIjCDLeJJzlR6T0SCSgZySsxBW0XDJcEQWM1-b1rolnWlnGxN6ql1Np7o3rqf3dm1csN4F6hs6DsFXVvfxTK2j8w-fLPSOTjofQjJpdQi2sdXXfbggJ41ug7n83s_J2-PDfPKcTF-fXibjaVIhF30ijeJD76lkJUrETJXY5HXDZYMACoQUpUi1yKDCWqtao0bGypwDGg68xHNys6-76fz7NrZfrG2oTNtqZ_w2FAJSFtPsIMykQMxTfhBirrI8ywd4_Quu_LZz8bUFcMXjAgFR4V5Vwzd1pik2nV3rblcAK4bhFX8ML6bYPhX00vyo-0_kE14Alvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292222161</pqid></control><display><type>article</type><title>Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete</source><source>Sociological Abstracts</source><source>Periodicals Index Online</source><creator>ELIASON, SCOTT R.</creator><creatorcontrib>ELIASON, SCOTT R.</creatorcontrib><description>In this article, the author develops a model that combines the RC(M) association model with the linear-by-linear association model for the analysis of two-way contingency tables. This combination provides a useful extension of both models that is applicable under many research conditions. A primary advantage of the model is that it allows the researcher to assess the influence of manifest factors on the row/column association while controlling for significant latent effects. The model also enables a partitioning of the association into that percentage due to the manifest component(s) and that percentage due to the latent component(s). Data from the 1991 General Social Survey are used to construct a cross-classification of occupations by job-related responsibilities which, in turn, is used to develop and illustrate (a) interpretation of parameter estimates, (b) row/column distance measures and plots in oblique space, and (c) a partitioning of the explained association in the table.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124195024001003</identifier><identifier>CODEN: SMREDA</identifier><language>eng</language><publisher>Beverly Hills, Calif: SAGE PERIODICALS PRESS</publisher><subject>Log linear analysis ; Mathematical Models ; Occupations ; Research methods ; Social sciences research ; Sociological research ; Tables</subject><ispartof>Sociological methods & research, 1995-08, Vol.24 (1), p.30-67</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7e920491470b373359b3f8df27f31191676b64a651c3da9da3a300b8213e212b3</citedby><cites>FETCH-LOGICAL-c326t-7e920491470b373359b3f8df27f31191676b64a651c3da9da3a300b8213e212b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124195024001003$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124195024001003$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27846,27901,27902,30977,33752,43597,43598</link.rule.ids></links><search><creatorcontrib>ELIASON, SCOTT R.</creatorcontrib><title>Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications</title><title>Sociological methods & research</title><description>In this article, the author develops a model that combines the RC(M) association model with the linear-by-linear association model for the analysis of two-way contingency tables. This combination provides a useful extension of both models that is applicable under many research conditions. A primary advantage of the model is that it allows the researcher to assess the influence of manifest factors on the row/column association while controlling for significant latent effects. The model also enables a partitioning of the association into that percentage due to the manifest component(s) and that percentage due to the latent component(s). Data from the 1991 General Social Survey are used to construct a cross-classification of occupations by job-related responsibilities which, in turn, is used to develop and illustrate (a) interpretation of parameter estimates, (b) row/column distance measures and plots in oblique space, and (c) a partitioning of the explained association in the table.</description><subject>Log linear analysis</subject><subject>Mathematical Models</subject><subject>Occupations</subject><subject>Research methods</subject><subject>Social sciences research</subject><subject>Sociological research</subject><subject>Tables</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>7QJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNqF0c9LwzAUB_AgCs4ff4GXgOCtmpfXJs1xzJ-w4WWyY0nbdGR0yWw6ZP-9qfMgIi6XEPL5Pl7yCLkCdgsg5R1jqQKegsoYTxkDxvCIjCDLeJJzlR6T0SCSgZySsxBW0XDJcEQWM1-b1rolnWlnGxN6ql1Np7o3rqf3dm1csN4F6hs6DsFXVvfxTK2j8w-fLPSOTjofQjJpdQi2sdXXfbggJ41ug7n83s_J2-PDfPKcTF-fXibjaVIhF30ijeJD76lkJUrETJXY5HXDZYMACoQUpUi1yKDCWqtao0bGypwDGg68xHNys6-76fz7NrZfrG2oTNtqZ_w2FAJSFtPsIMykQMxTfhBirrI8ywd4_Quu_LZz8bUFcMXjAgFR4V5Vwzd1pik2nV3rblcAK4bhFX8ML6bYPhX00vyo-0_kE14Alvk</recordid><startdate>199508</startdate><enddate>199508</enddate><creator>ELIASON, SCOTT R.</creator><general>SAGE PERIODICALS PRESS</general><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7QJ</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>199508</creationdate><title>Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications</title><author>ELIASON, SCOTT R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7e920491470b373359b3f8df27f31191676b64a651c3da9da3a300b8213e212b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Log linear analysis</topic><topic>Mathematical Models</topic><topic>Occupations</topic><topic>Research methods</topic><topic>Social sciences research</topic><topic>Sociological research</topic><topic>Tables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ELIASON, SCOTT R.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Sociological methods & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ELIASON, SCOTT R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications</atitle><jtitle>Sociological methods & research</jtitle><date>1995-08</date><risdate>1995</risdate><volume>24</volume><issue>1</issue><spage>30</spage><epage>67</epage><pages>30-67</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><coden>SMREDA</coden><abstract>In this article, the author develops a model that combines the RC(M) association model with the linear-by-linear association model for the analysis of two-way contingency tables. This combination provides a useful extension of both models that is applicable under many research conditions. A primary advantage of the model is that it allows the researcher to assess the influence of manifest factors on the row/column association while controlling for significant latent effects. The model also enables a partitioning of the association into that percentage due to the manifest component(s) and that percentage due to the latent component(s). Data from the 1991 General Social Survey are used to construct a cross-classification of occupations by job-related responsibilities which, in turn, is used to develop and illustrate (a) interpretation of parameter estimates, (b) row/column distance measures and plots in oblique space, and (c) a partitioning of the explained association in the table.</abstract><cop>Beverly Hills, Calif</cop><pub>SAGE PERIODICALS PRESS</pub><doi>10.1177/0049124195024001003</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-1241 |
ispartof | Sociological methods & research, 1995-08, Vol.24 (1), p.30-67 |
issn | 0049-1241 1552-8294 |
language | eng |
recordid | cdi_proquest_miscellaneous_61406510 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete; Sociological Abstracts; Periodicals Index Online |
subjects | Log linear analysis Mathematical Models Occupations Research methods Social sciences research Sociological research Tables |
title | Modeling Manifest and Latent Dimensions of Association in Two-Way Cross-Classifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Manifest%20and%20Latent%20Dimensions%20of%20Association%20in%20Two-Way%20Cross-Classifications&rft.jtitle=Sociological%20methods%20&%20research&rft.au=ELIASON,%20SCOTT%20R.&rft.date=1995-08&rft.volume=24&rft.issue=1&rft.spage=30&rft.epage=67&rft.pages=30-67&rft.issn=0049-1241&rft.eissn=1552-8294&rft.coden=SMREDA&rft_id=info:doi/10.1177/0049124195024001003&rft_dat=%3Cproquest_cross%3E1292222161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292222161&rft_id=info:pmid/&rft_sage_id=10.1177_0049124195024001003&rfr_iscdi=true |